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SUMMARY

This final report covers the 9-year research on future tether applications and on the
actual flights of the Small Expendable Deployment System (SEDS) as described briefly in
the following.

In order to keep the size of the report at a manageable level, the highlights of the
research are presented here while the interested reader can obtain all the necessary details
from the 34 quarterly reports that have covered systematically our research activity
throughout this contract.

This final report is subdivided according to the major topics of investigation as follows:
(1) Computer codes for the dynamics of tethered systems

(a) Description of numerical codes MASTER20 and MASTERDEPO to simulate the
orbital and attitude dynamics of tethered systems during station keeping and deployment
maneuvers; (b) algorithms to estimate orientation, angular rates and angular accelerations of
SEDS-1 endmass from instruments’ data; (c) algorithms to validate SEDS-1 endmass

data.
(2) Comparison of various tethered system simulators
Design of test case situations; simulation by various groups; comparison of results.
(3) Variable-g/micro-g laboratory tethered to the Space Station

(a) Dynamics analysis; (b) Conceptual design; (c) Investigation of potential
applications; and (d) Propagation of disturbances and isolation from noise of a variable-
gravity/micro-gravity laboratory tethered to the Space Station. A single tether and a dual

tether configuration are analyzed.
(4) Tethered space centrifuge

Investigation of the stability, the acceleration noise, and the suitability of the
acceleration levels for human habitation of a 1-km-long tethered centrifuge in low Earth
orbit. Analysis of the dynamics of the centrifuge during the spin-up and spin-down

phases.



(5) Two-dimensional structures with tethers

Various two-dimensional tethered structures for low Earth orbit are proposed for use as
planar array antennas. The stability of the structures is investigated and the system

parameters for specific mechanisms of stabilization are computed.
(6) Tethered high-gain antennas

Conceptual design of a travelling wave antenna for transmission from space of
ELF/VLF waves to the ground. Analysis of a V-shaped antenna, which consists of two
long tethers in the same orbit separated by a distance, for the reception of HF emissions

from outer space.
(7) Propagation of ELF waves into the ionosphere

Development of a method for the numerical calculation of the electromagnetic wave
field on the Earth's surface associated with the operation of an electrodynamic tethered

satellite system of constant or slowly varying current orbiting in the ionosphere.
(8) Reentry of tethered capsules

Dynamical and thermal analysis of the reentry of a capsule with an attached heat-
resistant tether which slows down the reentry at high altitudes and reduces drastically the
maximum temperature experienced by the capsule. The results of these type of reentry are
then compared to a reentry without tether and to a reentry with a low-melting-point tether
(1.e., reentry of SEDS-I).

(9) Deployment dynamics of SEDS-I

Simulation of the position and satellite attitude dynamics of SEDS-1. Deployment
simulations for different values of the tension model parameters. Identification of the
upper limits of the minimum friction in the deployer for a successful deployment.

(10) Analysis of SEDS-I flight data

(1) Analysis of magnetometer data; (2) Estimation of attitude determination accuracy
from instrument data; (3) Computation of attitude rates; (4) Validation of load cells and

magnetometer data with accelerometer readings; (5) Post-flight simulation of SEDS-1
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deployment by using the Carroll tension model and adjusting the parameters to fit the flight
data.

(11) Dynamics and Control of SEDS-II

(1) Development of a closed-loop control law for SEDS-2 for providing a small libration
amplitude and a low tether exit velocity at the end of deployment; (2) Analysis of the
robustness of the closed-loop deployment control law with respect to tension model errors

and actuator errors.



INTRODUCTION

This is the Final Report submitted by the Smithsonian Astrophysical Observatory
(SAQ) under NASA/MSFC contract NAS8-36606, "Analytical Investigation of Tethered
Constellations in Earth Orbit (Phase 11)." This report covers the period of activity from 22
February 1985 through 31 March 1994. The Principal Investigators (Pls) for this contract
have been E.C. Lorenzini, M.L. Cosmo, G.E. Gullahorn, and Robert D. Estes.

This final report presents the highlights of the research conducted through the 9-year-
long activity while the interested reader is referred to the 34 quarterly reports of this
contract for a much more detailed description of the project. Whenever possible, the
papers published under this contract have been incorporated into this report. The papers
have the advantage of providing a more concise description than the quarterly reports.
Moreover, the refereed papers have the added advantage of having been formally reviewed.
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1.0 COMPUTER CODES FOR THE DYNAMICS OF TETHERED SYSTEMS

The development of software has been a major effort throughout the whole course of
the study. The purpose of the software developed can be divided in two main areas:

1) Simulation of the dynamics of orbiting tethers.

2) Data analysis of tether flight conditions from instrumentation data

1.1 Tether Dynamics Simulators

Two codes have been written two simulate the dynamics of spaceborne tethers:
MASTER20 and MASTERDEPO. MASTER20 was originally written to simulate the

three-dimensional dynamics of the microgravity/variable gravity laboratory.

MASTER20 has been extensively used afterwards to simulate various other
applications like artificial gravity and tether-initiated reentry. MASTERDEPO is a further
refinement of MASTER20. It can simulate tether deployment as it was originally
developed to simulate SEDS deployments and the attitude dynamics of the end-mass. The
numerical integration of SEDS-1 flight provided a very good fit of the flight data as shown
in Section 10.

Moreover, we used MASTERDEPO to analyze the complicated attitude dynamics of
SEDS' end-mass. The results of this analysis have been included in a paper submitted for
publication to Acta Astronautica. In the same paper, a passive device for reducing the
amplitudes of attitude oscillations is also presented and its effectiveness assessed. A copy

of the paper is shown in Section 9.

Both codes model the tether as well as the platforms as lumped masses connected by

massless spring-dashpot systems to simulate tether elasticity and structural damping.

Each lump is acted upon by tensional, aerodynamic and gravitational forces.
MASTER20 drag force adopts a dynamic Jacchia 1977 neutral density model and
MASTERDEPOQ adopts the Mass Spectrometer Incoherent-Scatter-1986 (MSIS-86) model.
The gravitational forces include the second zonal harmonic of the gravity field (J2 term).



MASTER20 and MASTERDEPO also simulate the thermal effects on the tension due
mainly to the terminator crossings, as well as the Earth's albedo and IR radiation. An
improved version of MASTER20 includes aerodynamic heating to simulate low orbiting
probes and tether reentry conditions.

The code’s integrator routine is a fourth-order Runge-Kutta with adjustable stepsize.
This routine has proven to be reliable, even if not fast, under very demanding numerical
situations such as deployment with many lumps and tension discontinuity due to thermal
shocks.

In MASTERDEPO the deployment maneuver is simulated by placing a new lump
close to the deployer along the unit vector connecting the deployer to the closest old lump
with the same deployer velocity plus a term that takes into account the relative motion
between the last two lumps. The integration is then stopped, the new system state vector is
updated for the new lump and the integration is started again until the final length is

reached.

The platform attitude dynamics is computed by integrating the kinematics and the
Euler equations. The kinematics equations express the time evolution of the Euler angles
with respect to the inertial frame (3-1-3 rotation sequence). The Euler equations relate the

time derivative of the angular rates to the external torques.

The torques considered are related to the tether visco-elastic force, the gravity
gradient, the aerodynamic drag and attitude control.

The codes run on a VAX-780, MicroVax, Apple Macintosh and Sun Sparc Station-2.
1.2 Data Analysis Software

Several programs were written to analyze and validate SEDS flight data. Additional

software was written to compare the flight data to theoretical models.

QUEST Program

One of the main objective in SEDS data analysis was the estimation of the end-mass
orientation. To this end we wrote the program QUEST that adopts QUEST (QUaternion
ESTimation) and Triad (algebraic method) algorithms to estimate the attitude matrix A.

Quest algorithm uses u set of N observations at each time to compute the attitude matrix A



given a quaternions set ¢ that minimizes in a least square sense the cost function L(A)
(Wahba's function):

N

L(A) = z kaklﬁ'k - A!k|2

1

where:

N = number of sets of unit vector observations

ak = weights = 1/0k2 (0= measurement standard deviation)

wk = k-th set of unit vector observation in the body reference frame)

vk = k-th set of unit vector representation with respect to the reference frame.

The Triad algorithm instead uses only two reference vectors to determine the three
Euler angles. Even though this is not an optimal method it can be easily implemented to

check Quest results.

Both algorithms have been extensively used in the past to estimate spacecraft
orientation. On the other hand the definition of the vector observations has posed a
challenging problem. In order to estimate the orientation of a rigid body two reference
vectors are needed. In SEDS case only the magnetometer was dedicated to such
measurements using the geomagnetic field as the reference. As a second vector, we have
adopted the "tether” direction vector. Specifically, the direction of the line connecting the

end-mass to the deployer has been compared to the load cell unit vector.

A thorough analysis of the errors affecting the vector measurements was needed to

characterize the attitude covariance.
The vector measurement error Gyec can be written as
02vec = szod + 02meus
where
Omod = modeling error
Omeas = Instrument's measurement error

The magnetometer modeling error takes into account:



a) the error in the knowledge of the strength and orientation of the Earth's
magnetic field

b) the error in the computation of the reference magnetic field due to the knowledge
of the end-muss orbital position

The load cells modeling error takes into account that;

a) the line connecting the two end-platferms does not coincide with the direction of
the tensiometer because of the bowing of the tether

b) the direction of the unit vector connecting the two end-platforms is affected by the
knowledge of the end-platforms positions.

The magnetometer and load cells instrument error is 9.3 mGauss and 10 mN,
respectively.

The expressions of the covariance matrices for TRIAD and QUEST algorithms are
not reported here for the sake of brevity.

Other Software

During the course of the analysis we also wrote software to validate and check the
end-mass instrumentation's data.

Namely we developed:

1) Least-square estimator of the magnetometer bias

2) Estimation of the end-mass angular rates.

3) Comparison of the estimated angular acceleration with the accelerometer's data:
A=A-IM)=dw/ditx p+@x(@x p)

where A and T are the accelerometer and load cells signal, respectively, M the satellite
mass, @ the angular rates and p the accelerometers' body coordinates.

The results of the estimation of SEDS-1 end-mass orientation and data validation are
presented in Section 1().



4) FFT routine to analyze instruments' data

5) Computation of theoretical oscillations modes from tension and length data,
namely:

a) First three lateral ("string”) modes
b) Spring-mass mode

c) Pitch (e.g. end-mass attitude) mode.
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2.0 COMPARISON OF VARIOUS TETHERED SYSTEM SIMULATORS

Several tasks were performed to support the Tether Applications Simulation Working
Group (TASWG). Only the second task (the test case comparison) is discussed here. The
other two tasks, and more detail on the test cases, are given in an Interim Report included
in Quarterly Report #16.

First, a questionnaire soliciting information on current or planned tether simulation

programs was widely circulated. The responses were summarized in a table.

Second, a set of "test cases" was defined to allow comparison of the attempts of various
programs to simulate the same physical situations. These cases were simulated by a
number of program authors, including SAO with the program SKYHOOK. An extensive
set of plots is presented showing the agreements and differences among the results.
Spectral analyses are and differences among the results. Spectral analyses are also given.

Third, "analytic" results were discussed which a simulator author might wish to use for
validating a program. A bibliography was given. Only the second task (the test case
comparison) is discussed here. The other two tasks, and more detail on the test cases, are

given in an Interim Report included in Quarterly Report #16.
2.1 Test Cases: Comparison of Results

Four test cases were designed. The salient features are described in the following
section, while more detailed specifications are given in Quarterly Report #16. The physical
characteristics of the system are similar to those of TSS-1. A 20 km deployed length (TSS-
1 nominal) is used in three cases, while one case uses a 100 km deployed length. None of
the cases employ tether reel motion, i.e. the tether natural length remains fixed.

The tether is assumed to be idealized viscoelastic -- i.e. obeying a Hooke's law for
tension due to stretching, and having a damping force proportional to the velocity of
deformation. This assumption, particularly on the damping force, may not be very realistic
(Carroll, private communication; Xe and Powell, 1988), but it does allow an unambiguous
and simply treated internal force model. As far as is known, no simulator uses a different

elasticity model.

Results were obtained from six simulators. GTOSS results were provided by David
Lang of Lang Associates. STOCS results were provided by Roger Wacker of Lockheed

Engineering and Management Services Company, Inc. SKYHOOK simulations were

10



performed at SAO by Gordon Gullahorn. Peter Bainum of Howard University provided
results from an unnamed simulator which we refer to as HOWARD U. Arun Banerjee of
Lockheed Missiles and Space Company provided results from a simulator "Tether”, which
are referred to us LOCKHEED. Arun Misra of McGill University provided results which
we refer to by McGILL U. (John Glaese of Control Dynamics Company provided results
for one case; unfortunately, resources did not permit translation from the format provided.)

A preliminary report of the test case findings was made at a workshop associated with
the Second International Conference on Tethers in Space ("Space Tethers for Science in the
Space Station Era") in Venice, October 1987. Additional and corrected results are included

here.
2.2 Comparison Plots and Discussion

The results for the four test cases are plotted in the next section. The plots consist of
time series of the variables: radial, in-plane and out-of-plane position of the satellite with
respect to the Shuttle; the respective velocities; and in cases A and C, the direction cosines
of the satellite axes with respect to the radial/in-plane/out-of-plane axes. Plots of variables
which do not vary (e.g. out-of-plane motion where not excited) or which reproduce other

variables (some angular variables) are omitted to save space.

Because all the cases except B remain essentially in a vertical (radial) configuration, the
radial position for these cases is "normalized” by subtracting the first value for each
simulator from the successive values. This makes the labels on the left margin easier to
interpret.  Also, the different simulators had different mean values for the radial
component, which could overwhelm the more interesting time variations if plotted on an

absolute scale.

Note that the in-plane velocity has an offset due to the way in which velocities were
specified: as the difference of absolute spatial velocities of the satellite and shuttle,
projected onto the infout/radial axes. A more intuitively meaningful velocity would have
been to project the relative positions onto the axes, and take the time derivatives of these.
The other velocities are also not the same as the more intuitive definition would provide; the
difference is less pronounced because of the vertical configuration of the tether in three of

four cases.

Most of the plots follow a common format: results from all simulators which

participated in a given case are given on a separate plot for each applicable variable, with
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the simulators distinguished by line type. (A key to the line types is at the beginning of the
plots.) The case and variable are at the top of the plot. The plots are given in the order
they are discussed below.

CASE A:

The satellite is deployed at 20 km in hanging equilibrium, and has attitude dynamics. It
is given an initial impulse orthogonal to the tether in the orbital plane, to produce an initial
center of mass velocity of (.2 m/s. Output was requested every second for the first 1000 s,
and every 5 s for 5000 s. Possible phenomena which might be exhibited: in-plane
libration, transverse tether oscillations, and coupling of these transverse oscillations with

rigid body motions.

Three simulators -- SKYHOOK, GTOSS and STOCS -- provided results including
satellite attitude. SKYHOOK, due to run time restrictions, only simulated the first 763 s.
McGill University provided results, although their simulator does not include satellite
attitude.

First, plots for the full 5000 seconds are shown. Selected plots restricted to 1000
seconds are shown following these to more clearly show the SKYHOOK behavior.

The situation specified should restrict the system to motion in the orbital plane. All four
simulators successfully passed this "null test" and out-of-plane plots are not shown. Rigid
body motion was also restricted to one angle. The cosine of the angle oy between the
satellite "radial” axis (originally in the radial or vertical direction) and the in-plane axis of
the orbital coordinate system, is plotted: this is nominally 909, and small departures of the
cosine from zero are proportional to the angle between the satellite and reference vertical

axes.

Agreement among the various simulators is seen to be quite reasonable for a case of this
complexity, except for the radial component of the McGill results, which is plotted
separately. The McGill radial oscillations are much larger (about 10 m) than those for the
other simulators (about 0.3 m for SKYHOOK, and 0.05 m superposed on a slow 0.5 m
baseline variation for STOCS and GTOSS). This might be due, for instance, to starting the
simulation with a tether stretched beyond equilibrium.

The similarity between the STOCS/GTOSS results (which used the same basic engine)
and SKYHOOK on the angular variation are encouraging. To achieve this agreement,



however, the SKYHOOK input had to be adjusted: the first trial had used output generated
by a program which in the case with a finite satellite (as opposed to point mass satellite) left
the tether overstretched, resulting in a pronounced excitation of radial (longitudinal, axial)
modes. This coupled with the attitude oscillations, leading to a gradual but substantial

buildup of their magnitude.
CASE B:

A point mass satellite at the end of a 20 km tether is initially at rest in the system rotating
with the Shuttle, with the tether in a linear configuration, 45° out of plane, under zero
tension. The system is "released" and allowed to swing freely. This case may be expected
to demonstrate tether longitudinal modes, particularly bobbing, and coupling of in-plane

and out-of-plane librations.

Results were provided by all simulators except McGill University. The substantial out-
of-plane libration indeed coupled to provide significant in-plane libration. On the plots
showing the full motion, the different simulations are so close as to be almost
indistinguishable. The scale is so large, however, that moderate disagreement could exist.
One set of results (GTOSS) was arbitrarily chosen and the other results were different with
respect 1o GTOSS and plotted; i.e., at each time, the value plotted is that from a given
simulation minus that from GTOSS. Three plots showing the difference position variables
follow the standard plots for case B. As can be seen, the various results begin in close
agreement and gradually drift away from the GTOSS results with an overall slow
oscillation, reaching magnitudes of 10's to 100 or so meters by the finish of the simulation

(about 1 orbit).
CASE C:

The system has a 20 km tether and a satellite with attitude dynamics. Starting from
hanging equilibrium, the initial conditions are obtained by (a) tilting the satellite about the
tether attachment point by 45¢ in the positive out-of-plane direction, and (b) imparting an
initial velocity parallel to the tether. This case might be expected to demonstrate coupling of
(large) satellite attitude oscillations with tether tension variations (spring-mass and

longitudinal modes).

Results were obtained from STOCS and GTOSS for 1000 s, and from SKYHOOK for
about 500 s (restricted due to long run times). The radial components show similar
oscillations, with SKYHOOK about two to three times as large as GTOSS/STOCS results.
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GTOSS and STOCS show some out-of-plane motion, about a satellite radius; the period is
much longer than expected attitude oscillations, and its source is not clear. GTOSS and
SKYHOOK show similar trends of in-plane motion, but different magnitudes; STOCS
shows a different trend, of similar magnitude. Lang (private communication) reports that
the differences between STOCS and GTOSS have been resolved.

All nine direction cosines of the satellite attitude are plotted. STOCS and GTOSS
generally show similar character, though they differ in details and sometimes in the long
term trend. SKYHOOK results show a different overall character from the other two. In
particular, the SKYHOOK results generally show an increase in the short period oscillation
magnitude toward the end of the run, while the other results show a generally constant
oscillation superposed on a baseline trend. This could be a result of coupling between the
attitude oscillations and the higher modes of longitudinal tether oscillation. This difference
will be further commented on in the section on power spectral densities. It is interesting to
note the variety of distinctive behaviors of the attitude variables.

CASE D:

The system has a point mass satellite and deployed tether length of 100 km. An impulse
is applied to the satellite to generate a AV of 0.5 m/s in a direction perpendicular to the
tether and 45° out-of-plane. Phenomena of interest might include in-plane and out-of-plane
libration, transverse tether oscillations, and the different frequencies of in-plane and out-of-
plane transverse modes due to a restoring force toward the orbital plane (this effect

becomes significant only when tether mass is substantial compared to satellite mass).

All six programs ran the simulation, making this case interesting for the completeness of
its response. (Only four provided velocity information, SKYHOOK and LOCKHEED
lacking this output.)

There is a general differentiation of the simulators into two classes, also apparent in the
less well represented cases. Notice that although the overall variations in the in-plane
component are comparable, three simulators show smooth variation (GTOSS, STOCS and
HOWARD U) while three have a superposed rapid oscillation (SKYHOOK, LOCKHEED
and McGILL U). This same distinction is apparent in the two plots of normalized radial
component: the first, smooth, class shows variations of only a meter or two, and rapid
oscillations of only about 0.2 m (GTOSS and STOCS) or 1 m (HOWARD U); the second,
rougher, class must be plotted separately, since they show oscillations of hundreds of

meters amplitude. The out-of-plane component shows similar results, only now McGILL

14



U joins the "smooth"” class. Note that on the out-of-plane plot, GTOSS and STOCS are
indistinguishable.

One final set of plots is shown displaying the differences between two different uses of
the same program to attempt simulation of the same cases. For cases A and D (which
involved an "impulse" to the satellite), McGILL U performed simulations (a) by having a

thruster modelled in the satellite fire briefly, and (b) by giving the satellite an equivalent
initial velocity (AV), as if the thruster firing were brief but powerful. The moderate, but

still noticeable, differences are displayed without further comment; the dotted lines

represent the results where thrusters are used.
2.3 Time Series Plots

This section contains the time series plots discussed above. As feasible, the results from

several simulators are presented on one plot, with a universal line-type key given by:

SIMULATOR / LINE TYPE KEY

GTOSS
--------------------- STOCS
———————————— SKYHOOK
P HOWARD U
2 LOCKHEED
_______________ McGILL U

15
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2.4 Power Spectral Density of Simulator Results

Direct plots of time series of selected aspects (e.g. satellite position) of simulator results
(or any other "data") are one of the most obvious ways to examine the system behavior.
Another window into this behavior is provided by spectral analysis of these time series.

Spectral methods provide at least two insights:

Tethered systems, as most mechanical systems, can be largely considered as a linear
system. (Non-linearities, for instance the interaction of the satellite attitude with the tether
tension variations, are generally dominated by the linear aspects and form small
perturbations to linearity.) Linear systems possess distinct frequencies of natural vibration
(modal frequencies, or eigen-frequencies) and associated modal shapes; any unforced
vibration will be a superposition of these shapes/frequencies. Spectral analysis of simulator
results will show sharp peaks at a set of frequencies which can be compared to those
expected on theoretical bases, either generally (e.g., we expect a satellite oscillation, a
spring-mass longitudinal frequency, and a series of column-mode longitudinal frequencies)
or by comparing to numerically predicted modal frequencies. Lack of expected modes can
point out limitations or restrictions of the simulator's model, while reproduction of
predicted frequencies could provide a numerical measure of one aspect of a simulator's

accuracy (unless the simulator is more accurate than the idealized theoretical model!).

A second aspect which spectral analysis can highlight is the more general behavior of a
simulator's results. Often one looks at the time series plot and makes a comment along the
lines of "simulator A appears smoother than B, i.e. B looks like it has more short time scale
variability.” This may be more directly, and less vaguely, seen by looking at the power
spectral density (PSD) plots and noting that B is stronger at higher frequencies. The PSD
also allows some analysis of the source: if the high frequency strength of B is primarily at a
few spectral "lines” (narrow peaks), this is probably due to B successfully modeling
(presumably) physical modes of vibration that A misses; while if it is a fairly level high
"baseline”, then the high frequency behavior is likely due to some "noise", such as
roundoff or truncation error in the program or output digitization.

An appropriate means of looking at strength vs. frequency in the "data” (simulator
output) is to compute a power spectral density (PSD). In broad outline, the discrete Fourier
transform (DFT) of the data sequence is computed (usually with a fast Fourier transform,

or FFT, algorithm); this gives a set of complex values at a discrete set of points in
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frequency space. The magnitude squared of this spectrum is then the PSD. More details
are given in Quarterly #14 of this contract, and can also be found in Press, et al., (1986,
Sec. 12.7).

A number of sample PSD plots are shown in the next section for cases A, C and D.

Brief discussion of a few of these 1s below.
CASE A:

First, plots are shown of PSDs of the radial component and the single distinct direction
cosine comparing SKYHOOK and GTOSS results (the line type key is the same as for the
time series plots). The angular variable shows only one "line", corresponding to the
satellites mode of oscillation about its center of mass, and the two simulators agree closely
in this frequency domain just as they did in the time domain. For the radial component,
both show a sharp line at low frequency, at very nearly the same frequency; SKYHOOK,
however, displays a series of lines at progressively higher frequencies, corresponding to
internal "bar mode" oscillations of the tether. The baseline behavior of the two is close, so
the differences apparent in the time series plots are due primarily to the extra modes
modeled by SKYHOOK. The absence of higher modes in the GTOSS results implies that
the simulation was made without any nodes along the tether, nor with higher modes if the
modal model was used. Note also that the first internal mode, at about 0.1 Hz, is very close
to the satellite attitude oscillation in frequency; this is probably the vehicle for the coupling
noted when SKYHOOK was accidentally run with a large initial longitudinal oscillation.

Due to the limited SKYHOOK run, only 256 points could be used in the above PSDs.
GTOSS results allowed 512 point PSDs with correspondingly higher resolution; plots are
given, comparing the first and last 512 points, which agree closely.

CASE C:

Recall that the time series plots of angular variables in case C showed widely differing
character. Without comment, 512 point PSDs of GTOSS results for a number of these
variables are shown, and obviously differ widely. Comparisons of SKYHOOK and
GTOSS are also shown.



CASE D:
This case had all six simulators respond. Comparison PSD plots are shown. Note the

variety of spectral lines shown, and the differing high frequency baselines, particularly for
the radial component.

2.5 PSD Plots

The PSD plots are on the next four pages.
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2.6 Conclusions

The results from the various simulators when applied to a set of test cases showed both
encouraging agreement and disheartening and sometimes puzzling disagreement. The
disagreement generally appears to be due to failure to unambiguously specify and
implement the physical situation intended, or due to predictable limitations of the model
used, rather than to "error”. Display in the spectral domain via PSD helps understand the

sources of disagreement.
Several comments should be made with regard to the test cases chosen and their use.

First, on the complexity of the cases chosen. On the basis of several teleconferences
and material supplied by the test case subcommittee, two factors were deemed of prime
importance: (a) a small number of cases so that the comparison runs might actually be
made, and (b) inclusion of simulations that would depend on a wide variety of non-trivial
phenomena. Additionally, cases were chosen on the basis of being, typically, capable of
being set up as small changes from simulations which could be routinely run, e.g. starting

from a hanging equilibrium state.

In retrospect, this philosophy is seen to have two pitfalls. First, since several
phenomena often interact in one simulation and since some of the phenomena have no
readily available theoretical results (e.g., coupling of in-plane and out-of-plane libration for
large angles), the "expected” results are known only vaguely if at all. Second, again
because of the complexity of the cases, when (as was the case for all except case B) the
simulations do not agree it becomes difficult to determine the causes of the disagreement

and which simulation is more "correct”.

A more practical philosophy for the choice of test cases would have a larger number of
cases, each isolating one single phenomena, considering simpler, linearized effects before
complex interactions. This is typically the way in which a developing simulator should be
verified, though all too often it appears not to be carried out rigorously. These would often
involve theoretically expected results, and be more in the line of validation against analytic
solutions as discussed in Quarterly Report #16. What would be of interest, though not
feasible in the current effort, would be to obtain results from various simulators to observe

the effort (CPU hours?) required to simulate a certain effect with given accuracy.

The second point is that disagreement in simulator results can come about in several

ways: (a) the program or model may be faulty, leading to incorrect computation, (b) the



situation simulated may not be what was requested or intended, due to either poor
specification, faulty input, or exceeding the range of the simulator, (c) the output may be
misinterpreted. In the ultimate goal of obtaining answers to posed questions, problems with
setup or interpretation are just as incorrect (though less fundamental) as problems with
computation. One must consider success of the whole system (user + operator + program)

in predicting the evolution of a physically specified situation.

Related to this, and apparent from our experience with the test case exercise, is the
difficulty in specifying and implementing unambiguously a physical situation to be
simulated. There is a sign difference in the angle variable output between SKYHOOK and
GTOSS (and the similar STOCS).

One disturbing aspect of the whole subject of tether simulation, programs for which
have been written for a decade now, is the apparent lack of any validation by comparison to
physical experiment. Although the space environment is certainly different from the Earth
based laboratory, the task of modifying simulators to include the laboratory gravity field
(constant) should not be insuperable; neither should performing quantitative experiments.
The cost would certainly be less than that of a space mission, and the opportunities for

repetition and more detailed observation greater.
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3.0 VARIABLE-G/MICRO-G LABORATORY TETHERED TO THE SPACE
STATION

Tethers offers the possibility of varying the level of the apparent acceleration on board
a laboratory by exploiting the gravity gradient. By moving the laboratory along a vertical
tether attached to a mother station (e.g., the Space Station) or by placing the laboratory at
various distances from the mother station, the laboratory will experience an apparent

acceleration level which increases with the distance from the mother station.

In low Earth orbit, with a tether length of 10 km, the static acceleration on board the
laboratory, owing to the gravity gradient, can vary between zero at the system's center of
mass (CM) and 4x10-3 g at the tip of the tether. The external perturbations acting on the
system at the Space Station altitude of 450 km (a value that was valid at the time of our
study) causes fluctuations of the accelerations a. The magnitudes of the acceleration was
estimated as follows: a € 10-6 g for frequency <€ 10-3 Hz; a < 10-7 g for 103 Hz <
frequency < 10-2 Hz; and a < 10-7 g for frequency = 102 Hz.

Two configurations were investigated during our study: (A) a single-tether system
whereby the Space Station is at a non-null acceleration level; and (B) a dual tethered system
whereby the gravity laboratory moves along the upper tether and the lower tether was
added to nullify the acceleration on board the Station and to provide a pollution-free
platform for the study of the Earth.

The propagation of disturbances from the Station, through the tether, to the gravity
laboratory and to the outer platform at the tether tip was also investigated. In conclusion, it
was found that a small material damping (of a few percents) is enough to abate dramatically
the longitudinal waves at frequency above 1-2 Hz. The transverse waves, instead, are only
slightly affected by material damping because transverse waves have only a non-linear
coupling to the tether stretch.

Four papers are included in the following which summarizes the highlights of our

research on this topic as follows:

Paper 1 presents the deployment strategy for the single-tether system and the

techniques to damp the vibration modes excited during deployment.

Paper 2 deals with the acceleration noise levels on board the gravity laboratory of the

dual-tether system. The influence of external perturbations in analyzed in detail for two
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distinct cases: (a) for a laboratory fixed on the tether; and (b) for a laboratory crawling
along the tether. Moreover, the acceleration noise levels caused by external perturbations
are compared to those required by a number of microgravity processes proposed for the
low-gravity environment of the Space Station.

Paper 3 focuses on the attitude dynamics of the gravity laboratory placed at 1-km
distance from the Space Station and investigates the noise component related to the attitude
degrees of freedom.

Paper 4 investigates the propagation of longitudinal and transverse waves along the
tether from the Station to the gravity laboratory and to the platform at the tether tip. The
model treats the tether as a continuum and takes into account the effect of gravity gradients,
material damping, and the inertia of the masses at the end of the tether or attached along the
tether.

See also Quarterly Reports No. 1 through No. 15 of this contract for more details.
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A Three-Mass Tethered System for
Micro-g/Variable-g Applications

Enrico C. Lorenzini*
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts

This paper describes a Space-Station-attached tethered system for micro-g/variable-g applications. The
system consists of three platforms: the Space Station, an end mass anchored at the end of 2 10-km-long keviar
tether, and a micro-g/variable-g laboratory with the capability of crawling along the tether. Control strategies

are devised for performing both the deptoyment and the
algorithms are identified for damping out the major oscill

Nomenciature

a =semimajor axis

A, =ith tether cross section

E, =ith tether Young’s modulus

F, = force acting upon the ith mass

g = gravity acceleration at the Earth’s surface

k, = ith-tether stiffness

1, =distance between mass m, and mass m,,,

m, =ith mass

r, = radius vector from the Earth’'s center 1o the ith
mass

T, =tension in the ith tether

x,2 =orbiting axes

Xg,Zg  =body axes

X5,2y =inertial axes

Y] = orbital rate

P, =radius vector from the system center of mass to
the ith mass

Introduction

HE ongoing development of the Space Station program

has vitalized research in microgravity related ex-
periments. Material processing, pharmaceutical production,
and life sciences are the disciplines that will benefit the most
from an orbiting laboratory capable of providing a
microgravity acceleration level (or better) at frequency <0.1
Hz for I day to | month duration.!? The current requiréments
for the microgravity laboratory on board the Space Station
specify 2 10-° g acceleration level at all frequencies.? This ac-
celeration level is marginally satisfactory for most of the envi-
sioned microgravity experiments. Furthermore, the
microgravity experiments severely restrict the scheduling of
other ‘‘noisy”’ activities onboard the Space Station. The
reasons above prompted us 10 conceive an alternative con-
figuration for the microgravity laboratory that makes use of a
tethered system attached to the Space Station.*’ As shown in
Fig. 1 the system consists of a 10-km-long, 2-mm-diameter
kevlar tether attached to the Station at one end. Another plat-
form (e.g., a scientific platform) with a presently estimated
mass of 9.06 metric tons is attached to the other end of the
tether. The micro-g/variable-g laboratory (in short, ‘‘g-
laboratory™ or ‘‘g-platform’’) with an estimated mass of §
metric tons is also attached to the tether in between the two

Received June 11, 1986; presented as Paper B86-1990 at the
AIAA/AAS Guidance, Navigation and Control Conference,
Williamsburg, VA, Aug. 18-20, 1986; revision received Dec. 16, 1986.
This paper is declared a work of the U.S. Government and is not sub-
ject 1o copyright protection in the United States.

*Scientist, Radio and Geoastronomy Division.

siationkeeping maneuvers of the system. Effective
ations of the system.

end platforms. The g-laboratory s equipped with a
mechanism for *‘crawling’” along the tether from one end to
the other. The stable configuration of the system, as
thoroughly dealt with in other papers,® is along the local ver-
tical while the tether is stretched by opposite forces resuiting
from the balance of gravitational and centrifugal forces acting
upon the system. The point where the above-mentioned forces
balance out is often called ‘‘orbit center’ and its distance
from the Earth's center, when the tether mass is neglected, is
given by

3 ] 3
ro= (Em,r,/):m,/rf) ()
r=} =]

where r, is the length of the radius vector from the ith mass to
the Earth’s center and the summation is extended to the three
masses which constitute the system. For moderately long
systems the orbit center coincides with the center of gravity
and with the center of mass (C.M.). In our case, assuming a
Space Station mass of 90.6 metric tons (as foreseen for the in-
itial phase of the Space Station program), the offset between
the center of mass and the orbit center is 1.2 m when the g-
laboratory is located at the orbit center and the Space Station
is flying at 500 km altitude. If the laboratory is displaced from
the orbit center it will experience a steady-state acceleration,
linearly dependent upon the distance from the orbit center bocs
the modulus of which is given by

A, =302, %)

This acceleration is usually called gravity gradient acceleration
but actually two thirds of it originates from gravitational
forces and one third from centrifugal forces.

It follows from the description above that by placing the g-
platform at various distances from the orbit center, the g-
laboratory will experience correspondingly different accelera-
tions ranging from zero-g at the orbit center to approximately
10-2g at the tether end opposite the Station.

Once the system is deployed from the Space Station the
residual oscillations (e.g., vibrations excited during the
deployment phase) must be damped out by active and/or
passive dampers. Both the deployment maneuver and the
damping algorithms activated during the stationkeeping phase
are described in the next sections.

Mathematical Models
Two reference frames are erected (see Fig. 1). The orbiting
reference frame [x,z} rotates at constant orbital rate Q. Its
origin coincides with the system (C.M.) at time 1 =0 with the
axis along the local vertical toward the Earth’s center, and the



MAY-JUNE 1987

x axis along the local horizon on the orbital plane toward the
direction of flight.

The body reference frame [xj,2,] has its origin at the system
C.M., with the z axis parallel to the line through the end
masses (m, and m,) of the system and pointing toward m,
and the xz axis on the orbital plane toward the direction of
flight.

Two different mathematical models have been derived for
the dynamics of the system based on different choices for the
integration variables. Both models describe the two-dimen-
sional dynamics (in the orbital plane) with respect to the or-
biting reference frame. The assumptions are the same for the
two models: point masses, spherical Earth, second-order ex-
pansion of the gravity potential, elastic but massless tethers.
In the first model, moreover, the orbit of the system C.M. is
assumed to be circular.

Mathematical model | makes use of the Lagrangian coor-
dinates 8, /,, 1,, € (see Fig. 1). The kinetic energy of the system
is given by

1 3
T=2—Em,|v,,l1 3)
t= |

where the inertial velocity v, can be expressed in the orbiting
reference frame as follows:

|-,‘=|>”‘+ﬂxa+(54Q)Xp”l 4)

In Eq. (4) the subscript B identifies the body reference frame.
By developing Eq. (4) and by substituting in Eq. (3) we get:

1
E m, {.\“H,: + gt (B= D) vy 4 2y0)

‘ 1
+2(0 =) (XN, 2p, = NpZh )} + o, Qa &)

where s, =m, +m,+m, expresses the total mass of the
system.

V=—u2i (6)

The potential energy expansion. with respect 1o the body axes,
truncated to the second order gives

[ .
V= -5 z: mQ? {(3c0530— Dzye +(3sin?0 - Dxg,?

N

-6 sinecosexg,:,,,} -m,,Pa (7)
Since e/, we can express x4, z, in terms of /. and ¢ as
follows:

g =R+ (1-R)),

Z; =Ry, - R\

Zp={Ry, -1, -R|l,

Xg = —Re¢

xgy=(1-Ry)e

Xgy = —Rse 8)

where R, =m,/m,,,.
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) The Lagrangian function £ is readily obtained by subtract-
ing the potential energy from the kinetic energy, while the
equations of motion are given by

d ( aL ) aL =14 9
—\—)-—=0,, i=1,..,
dr \3g, 7, Qa ®

where the Lagrangian coordinates are
Q=0 q=ecqy=1;q9,=1 (10)
Substitution of Eqs. (8) into Egs. (5) and (7) gives the
Lagrangian as a function of the variables 4, Iy, €, 0. After
lengthy derivatives we get the following equations of motion:
GLR 1 +u) +Ryly [ 1y - ul +R,(1-R,)e?|
+2(6=) (R [l + 4] +Ryly [ - ]
+ Ry (1= R;)eé] +30sinbeosf( R/, [{, +u)
+ Ry —u) =Ry (1~ R, )e?} + 302 (sinf
—cos?0)Ryue — Rye (R, - Ryl3) = Ryéu=Q,/m,,
Ri(1-Ry)[é+ge) - 2(6-0)R,u
—(l§+d)R3u=Q,/m,o,
Ry (1=R\)Y\+bl,)+R,Ry [+ bl ]
~2(0-DR,Ryé ~ (6-d)R,Rye = Q, /m,,
Ry(1=Ry) [y +bl) +R Ry L1} + b1,

+2(9—Q)R:R,e‘+(('i'—d)R:R,e:Q,:/m,o, (1)

(End Plotform) My

_ flight direction
(G-Lt:t:)cm:fory)m2

to the
' O Earths

‘ l center

Fig. 1 Schematic of three-mass tethered system.
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where
b=02(1-3cos20) — (§—0Q)2
d = 30%sinbcosé
g=0%(1-3sin20) — (6 —Q)? (12)

while u is the distance of m, from the system C.M. and i is the
associated rate of change given respectively by

u=Ryl; - R,
tu=Ryly- R\, (13)
The generalized forces in Eqs. (11) are given by

3
ar
Q=) F—., j=1,.,4 (14)
/ =1 aq/

where F, are the forces acting upon the three masses. Since
¢, ¢/, we have that sin(e,//) =¢,/l, and cos(e,”l)=1. The
forces F, are therefore given by:
F,= —T (cosb+e/l,sinf)k
=T, (sinf — e/l cos)i
Fy=[(T, - Ty)cosb+ (T, /I, + T,/1,)esinb)k
+ (T, - T,)sin6— (T, /1, + T, /1;)ecosb}i
Fy=T,(cos® —e/l,sinf)k
+ T, (sinf + ¢/l cos8)i (15)
where T, and 7, are the tensions in tethers 1 and 2, respec-
tively. The radius vectors r, are given by
ro=xi+2z,k
= (25,5in8 + xg,c086)i

+ (25,€086 — xg,5inf) k, 1=12,3 (16)

By using Egs. (8) and by substituting Eqs. (15) and {16).into
Eq. (14) we finally get

Q=0
Q.= —e(T\ /I, + Ty /1)

Qn=-T,

Qn=-T, an

Since Egs. (11) are of the form 4% =b(x,£) the coefficient
matrix 4 must be inverted in order to integrate numerically the
equaticns of motion.

In mathematical model 2 the integration variables are the
Cartesian coordinates of the masses with respect to the above-
mentioned orbiting reference frame. The variables Ll ¢ 0
are then obtained from the Cartesian coordinates. The
assumptions for model 2 are the same as those of model 1 ex-
cept for the circularity of the orbit. With reference 1o Fig. 1,
the inertial acceleration of the ith mass with respect to the
rotating orbiting frame is given by

Fu=p+20xp, +Ax (R+r), =123 (18)
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" The equations of motion in functional form are given by

miFfy=F,+Fp, i=123 19)

where F,, is the gravity force acting upon the ith mass given by

Fo=-9V=-v {'/zm,[zs)za2

+20%z, - (x2+22) + 3921,2]} (20)

while F; is the total tension acting upon the ith mass. By
developing Eqs. (18-20) we obtain the well-known Hill's equa-
tions as follows:

F=20% =F,,/m,  i=1,23

§=30z, +20%, =Fp,/m,  i=1,2.3 210

With reference to Fig. 2 we derive the force F;, as follows:

Fr=lT + T\ i+(T, =T 0k i=123 22

where T,,, T, are the components of the tension T in the

i

tether connecting the ith /mass to the i+ Ith mass, given by

Tn=T:C°SBn=T1(XNI_xl)/ln i=1,2

T, =TsinB, =T, (z,,,-2,)/1, =12 23)

while T\, = 7, = 0. The relations between {1, 1,8, eand thein-
tegration variables can be easily computed as follows:

X, —x
6=tan-! [—'—’}
L4
I,=[(X,,|—X,)2+(Z,‘|—Z,)2]V', i=1-2 (24)
The lateral displacement e is derived by computing the coor-
dinates of the point of intersection (x., 2.) between the
straight line through m, and m, and its perpendicular through
m;. The result is as follows:

e=1(x; - x.)* + (2~ 2.)%)"sign (x, - x_) (25)
where

Xc =[x, - x;tan?0 + (z, ~ z, )tan6)/ (1 - tan?6)
Z. =[x, —x;]tanf -z, (26)

In both models 1 and 2 the tension in each tether is computed
from the tether stretch. A longitudinal oscillation damper
(along the tether) with stiffness k; and damping b; has been
added to each tether segment. In Fig. 2, I, is the commanded
length of the jth tether that can follow a prescribed control law
if the associated tether is actually controlled by a reel system
or if not, it is the natural tether length, 1, is the length of the
associated longitudinal damper and l; the ith tether stretch.
Tether tensions and stretches of the longitudinal dampers for
the three-mass system are therefore as follows:

EA
Ti=knln‘=%(li—[di—ln)' i=1,2
k, K, .
Idl =b—:1"_ b, ,dn i=12 @7

Both models | and 2 have been numerically integrated by us-
ing a fourth-order Runge-Kutta integrator with variabie step
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size. Results for test cases with circular orbit of the system
C.M. have been identical, demonstrating the reliability of the
models.

Model 1 is suitable for analytical simplifications which pro-
vide direct insights into the dynamics of the system. Model 2
does not have this feature but can be more efficiently in-
tegrated than model 1 (especially with more than three masses)
because it does not require any matrix inversion. The equa-
tions of motion of model 2 are summarized below:

X, =2208 + T (xa=x,)/(ml))
Xy =202+ Ty (xy —x;)/ (myly)
+ T (x, ~xy)/(myl))
Xy =202, + Ty (x, = xy)/(myls)
3 =307 - 20x, + Ty (2, —2,) 7 (my )
=302, - 20, + T, (2y — 2,) 7 (maly)
+ T (2 -2,)/(myl))

3y =30y = 20X, + T (22 ~ 23) /(i ly) (28)

where, for equal cross sections and Young's moduli of the two
tethers, we have

T,=EAI, /I,
T,=EAl,/l,
b=l =1y -1,

lp=li=lp-1,

Iy =kl /by =kl /b,
I =Kplp/by = Kyl /by 29)

Equations (28) and (29) together with Eqs. (24-26) describe
the two-dimensional dynamics of the three-mass tethered
systemn.

Damping Algorithms
Before dealing with the deployment maneuvers of the three-
mass system we must conceive effective algorithms for damp-
ing out the oscillations associated with the various degrees of
freedom of the system; namely, the libration 8, the lateral
oscillation ¢, and the longitudinal oscillations /,, /;.

Libration/Lateral Dampers

From Eq. (11) we can infer that the libration of the system,
when the g-laboratory m, is placed at the system C.M.
(m |1, = myly), is described in first approximation, for small
oscillations, by the following simplified equation

6P -2(6-)1+3026=0 30

where /=1/+/,. We assume, moreover, that the tether is

unstretchable; hence /=/..
In Eq. (30) the second is the dissipative term. The energy
dissipated for each libration cycle is therefore given by

E,::So 16 -0)6d:

=2/0£; 16— 0)6d: 3n
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where r=2x/(V3Q) is the period of the libration and ly is the
tether length for #=0. Our goal is to implement a tether con-
trol law (for the two tethers) that maximizes E,. Let us adopt
the following control law:

lo=1(1-K,0) (32)

with the gain K, greater than zero. The length control law ex-
pressed by Eq. (32) can be readily transformed into a rate con-
trol law. Here we adopt the length control formulation
because it gives a more immediate insight into the dynamics of
the system, as explained later.

Since d6?/dr=266 and, for small values of 8, /=/,, by
multiplying Eq. (30) by # and integrating from 0 to 7 we obtain

/55 dé* + 21(,50 1(6-0)6dr + 3023 So 6d6=0 (33)
0
For light damping the approximate solution of Eq. (30), over
one cycle, is as follows:

6=4sin (V3Qr) (34)
where § is the libration amplitude and v3Q the frequency. By
substituting Eq. (34), its derivative, and Eq. (32) into equation

(33), and after computing the integrals [the third integral in
Eq. (33) is equal zero) we finally get

Aé_ x & 35
§ =V 1, (39

where 6/ = 2/ok,0 is the peak-to-peak tether length variation as
derived from Eq. (32), while Af is the decrease of libration
amplitude per libration cycle. In the case of light damping Eq.
(35) expresses the logarithmic decrement of the libration
angle. The most important and unique feature of the control
law (S-type) expressed in Eq. (35) is that the logarithmic decre-
ment increases inversely with the libration amplitude §. The
trajectory followed by the end masses is readily obtained by
substituting Eq. (34) into Eq. (32) and solving for the x and z
components. It is interesting to note that the trajectory fol-

Fig. 2 Schematic of longiludinal dampers.
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lowed by the end masses in a damping cycle is not an eight-
shaped yo-yo cycle®’ but an S-shaped cycle. In other words,
the tether is shortened during the retrograde part of the libra-
tion and is lengthened during the prograde part as shown in
Fig. 3. The control law expressed by Eq. (32) can be adapted
to a three-mass system by modifying and generalizing Eq. (32)
as follows:

Ly =1y [1 - (K8 —K,e/1)))

Ly =l {1 = (Ks0+ K, e/1,)) (36)
Both & and ¢ are fed back into the tether reel control. Because
of the last terms in Eq. (36) the mass m, is moved along the
wire in such a way as to produce Coriolis forces which are op-
posed to the lateral displacement ¢ in order to detract energy
from the oscillation associated to that degree of freedom. A
simplified version of Eq. (36) can be obtained by assuming
K, =K,, consequently we obtain (see Fig. 3)

Iy =l [N —Kg(8—€/1))) =1, (1= K,8,)

la =gl =Ky (8+€/1,)] =15 (1 - K,8,) a3n
This simplified version, where 6, and 6, are fed back into the
reel control system, is the one adopted in the following simula-
tions. The value of the gain X, has been determined by impos-
ing a maximum tether length variation, during a libration
damping cycle, of 1% of the fully deployed tether length per
degree of libration 6. The lateral oscillation ¢ actually gives a
smaller contribution than the libration 6. The resulting value
for the gain is K, =0.55.

Longitudinal Dampers

Two passive dampers (spring-dashpot), mounted in series to
their respective tethers, have been added to the system for
damping the longitudinal tether oscillations. The passive solu-
tion has been chosen in order to simplify the design of the
three-mass system. According to our design philosophy the
reel system (unavoidably massive) controls the low frequency
oscillations (librational and lateral) of the system while the
passive dampers damp the higher frequency, longitudinal
oscillations.

91=9+£/l1
8236‘€/12

Fig. 3 Pictorial representation of system’s dynamics during a libra-
tion cycle with librational/lateral dampers switched on.
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In order to maximize the energy transfer between the

longitudinal vibrations of the tethers and of the respective

longitudinal dampers, the natural frequency of each damper
must be equal to the natural frequency of the associated
tether. Since the longitudinal oscillation frequency changes
with tether length the passive dampers perform best for a
specific tether length only. An adaptive system could be im-
plemented instead but it has not been included in the present
analysis. In the present design each passive damper is tuned to
the frequency of the associated 2-mm-diam kevlar tether at
the natural tether length during stationkeeping: /,, and Lk
respectively. The damping coefficient ¢ has been set at 0.9 for
both dampers. From numerical simulations £ = 0.9 has proved
to maximize the damping of the longitudinal vibrations in the
two tether segments. Since mass m, is placed at the system
C.M., lyym, =ly,m, and the angular frequency of tether 1 is
equal to the angular frequency of tether 2, as indicated by

wy =wp=[EA/ (I m)" =2.74x 10" 2rad/s

=4.4x107% Hz (38)

where EA = 61645 N for a 2-mm-diam keviar tether, 14 =909
m, and m, =90.6 metric tons. Consequently the gains of the
longitudinal dampers in Eq. (29) are as follows:

k =FA/l,, =67.81 N/m
ky=EA/l,,=6.781 N/m
b, =2tw,m, =4460.24 N/(m/s)

by = 2twpm, = 446.024 N/(m/s) 39)

where /, /1y, =m;/m, =1/10. Equation (38) also indicates
that the tethers provide a very effective isolation of the 8-
laboratory from any oscillation of the Space Station or the end
platform with a frequency greater than 0.1 Hz.

Deployment Strategy

Deployment of the system is obtained by unwinding the two
tethers from two reel systems that control independently tether
1 and tether 2. Equation (30) referes to a two-mass system but
it also describes approximately the dynamic of a three-mass
system as long as mass m, is located at the system C.M. From
Eq. (30) we infer that in order to have a deployment with con-
stant 6 (deployment along a straight line) the reeled out tether
length must be an exponential function of time.* Generalizing
this to a three-mass system, each tether length must increase
exponentially with time and /,/4,=1,,/1,, (fully deployed
tether lengths) in order to maintain the mass m, at the C.M.
The exponentially increasing phase (acceleration phase) is
followed by an exponential deceleration phase and subse-
quently by a transition phase to stationkeeping conditions. All
the transitions between sequential phases are simultaneous for
the two tethers. In the following formulas /,, is the initial
tether length of tether 1, /g, is the tether length at the begin-
ning of the deceleration phase, /5, is the length at the begin-
ning of the transition phase (as later explained), lp is the final
length, and /,, is the controlled tether length. In formulas the
first two phases are summarized as follows:

Phase I (acceleration) /,, </, </,

Iy =1 e

la=lpe (40)
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Fig. 4 Dynamics of three-mass tethered system during stationkeeping. 1 orbit = 5677 s.

Phase 11 (deceleration) /g, =/, </p
Li=Un—ly)e ¥+,
[‘.2=(1n—lﬂ)e-5{+lﬂ (4])

where 3=a/ (/I — 1) and a = ¥ {sin(26,). In Egs. (39), 6,
is the constant value of 6 during the acceleration phase.

The final tether lengths /, and /,, are the tether lengths at
which the tether speed would be reduced to zero if the
deceleration phase were continued indefinitely. In order to
speed up the deceleration phase, /n >/, and /5> 1y,.

The transition control law is activated when the actual speed
of tether 1 during the deceleration phase equals the tether
speed imposed by the stationkeeping control law with a libra-
tion angular rate 6 at the time of transition between the two

phases, as set forth in the formula
=B —1n) =1y keby 42)

and similarly for tether 2. However, tether speed continuity
does not imply tether length continuity. The mismatch is cor-
rected by the transition control law and by a choice of control
parameters that minimizes such mismatch. The transition con-
trol law is a semicycle of a cosinusoidal function of duration
AT activated at the transition time. In formulas

Phase 111 (transition) /Iy s/,

Ly =g (1 = fr—k,0)

!

T
Jr=Jor cos ('2- E) (43)
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Fig. 5 Dynamics of three-mass tethered sysiem during deployment. 1 orbit = 5677 s.

where f,r = Al/l,,, is the tether length mismatch at transition
divided by the stationkeeping tether length. Similar formulas
apply to tether 2.

This deployment strategy is similar to the one formulated by
Misra and Modi.® Unlike the deployment strategy of that
paper, the measurement of the libration angle 8 is not required
during the acceleration phase of our deployment maneuver.
Consequently radar tracking is not necessary at short distances
where the radar is blind. Secondly, the librational damper is
activated before the end of deployment and remains active
during the following stationkeeping phase when damping of
librations is also necessary. In the above-mentioned reference,
on the contrary, the damping of librations is proportional to

the deployment speed and it tends to zero at the end of the
deployment maneuver.

Numerical Simulation
Stationkeeping Phase

The effectiveness of the dampers during stationkeeping is
shown in the following set of piots. These plots have been ob-
tained by simulating the dynamic response of the constellation
for 14,000 s during the stationkeeping phase under the follow-
ing initial conditions: the initial tether lengths are /,, =909 m
and /, = 9090 m, the initial libration angle is 8, =1 deg, and
the initial lateral deflection of mass m, is ¢, =0.10 m. Figures
4a and 4b show the tether length and the longitudinal damper
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length, respectively, for tether 1. The same quantities for
tether 2 have a similar time dependence but are scaled up a fac-
tor of 10. Figures 4c and 4d show the libration angle 6 and the
lateral deflection e, respectively. Finally, Figs. 4e and 4f show
the horizontal and vertical acceleration components measured
on board the g-laboratory. Initial transients are effectively
abated and, at the end of the simulation, the acceleration level
at the g-laboratory (in the absence of external forcing terms) is
well below 10-3 g,

Deployment Phase

The parameters for the deployment maneuver adopted in
this study have been obtained by trial and error after several
deployment simulation runs. The following set of parameters
provides a stable, fast maneuver and minimizes the mismatch
at the transition between the deployment and stationkeeping
phases. The parameters are as follows:

lgy =500 m
In =14y +0=909+100= 1009 m
. =30 deg
AT=2000 s (44)

In the deployment maneuver simulation shown here the initial
tether lengths are /;, = 20 m, /, = 200 m. Although these values
are greater than in actuality, they allow a deployment without
tether slackenings. The system shows a tendency to go tem-
porarily slack at the very beginning of the deployment
maneuver because of small errors in the initial conditions. An
in-line thruster, as also proposed by Banerjee and Kane® and
adaptive longitudinal dampers can help considerably in reliev-
ing the slack tether problem but were not included in this
study. An initial libration angle 8, = 30 deg and an alignment
error of the three masses ¢, = 0.05 m complete the set of initial
conditions. The dynamic response, however, is fairly insen-
sitive to these parameters. Figures 5a and 5b show the tether
length and tether speed respectively of tether 1 vs time. The
corresponding quantities for tether 2 are like those of tether |
scaled up by a factor of 10 (they are not shown here for
brevity’s sake). The deployment is completed in approxi-
mately 3 h. This value, however, is affected by the initial
tether length and is therefore ultimately affected by the posi-
tion of the reeling system on the Space Station with respect to
the Station C.M. More important are the initial tether speeds
which must be as close as possible to the initial design speeds,
according to the law /, = af,,, in order to avoid slackening of
the tethers. In Fig. 5b the different phases of the deployment
control law are evident: the activation of the rotational
damper results in the ripple at approximately 5500 s, while the
disactivation results in the second ripple at 7500 s. The time
history of the libration angle 8 is plotted in Fig. 5c, where the 8
angle is constantly equal to 6, as expected, during the deploy-
ment acceleration phase. Figure 5d shows the side view of the
trajectory of mass 1 (Space Station) with respect to the system
center of mass. Mass 3 (the end platform) follows a mirror;ike
trajectory scaled up by a factor of 10. Mass 2 (the g-
laboratory) remains very close to the system C.M. throughout
the deployment maneuver. Figure Se is the lateral displace-
ment ¢ of mass 2 vs time. When the librational/lateral damper
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is switched on at 5500 s this oscillation begins to be damped
out. The damping of e is less effective than that of the angle 6
because the librational/lateral damper is tuned to the libra-
tional frequency. By using a multifrequency damping tech-
nique, as formulated in Eqgs. (36), the damping of the lateral
oscillation can be further improved. Figure Sf shows the time
history of the tension in tether 1 which is very close to that of
tether 2 throughout the entire deployment maneuver.

Conclusions

The proposed tethered system is an advisable alternative to
the presently contemplated micro-g laboratory installed near
the Space Station C.M. The low frequencies of the long tethers
and associated dampers provide a good isolation from Space
Station and/or end platform oscillations at a frequency higher
than 0.1 Hz (it is possible to improve even further on this
score). The tether system has the additional capability of con-
trolling the position of the g-laboratory along the tether in
order to nullify the gravity gradient or to vary it according to a
prescribed profile. The proposed deployment strategy allows
the system to reach its final configuration in approximately 3
h. The initial part of deployment, however, requries a more
detailed analysis. The active and passive dampers added to the
system provide an effective abatement of the longitudinal,
librational, and lateral oscillations, as demonstrated by the
simulations of the deployment and stationkeeping phase. A
thorough analysis of the perturbations acting upon the system
is yet required. It will be a topic of investigation in our future
studies.
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This paper investigates the dynamics

and acceleration levels of a new tethered system for micro- and

variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station.

A fourth platform, the elevator, is placed in between the
on board the elevator are obtained by moving this facilit
are carried out on board the Space Station. By controllin

Introduction

CURRENT studies of microgravity experiments onboard
the Space Station point out several requirements of such
experiments that cannot be met by the microgravity labora-
tory presently designed for the Space Station. A variety of
experiments, encompassing among others life sciences, mate-
rial processes, and pharmaceutical rescarch, have been pro-
posed for the Space Station’s microgravity laboratory. The
threshold levels of acceleration noise for such experiments
range from 10~2 to 10~* g. A facility capable of exploring all
or part of the range specified above would greatly enhance the
capability of the Space Station in the area of microgravity. On
the other hand such a system should not alter the acceleration
level onboard the Space Station above the present require-
ment of 10-% g (at all frequencies) in order to not interfere
with the experiments to be carried out on the station.

The system that we propose consists of two end platforms
(See Fig. 1), tethered to opposite sides of the Space Station.
The upper and lower tethers have a diameter of 2mm and a
length of approximately 10 km. Since the upper and lower
platforms are in a pollution-free environment (far from the
station), they can be used for observation of the sky and the
Earth respectively. The controlled gravity laboratory is lo-
cated onboard a “space elevator” that can crawl along the
upper tether between the Space Station and the upper plat-
form. Microgravity experiments are carried out onboard a
stationary laboratory (SML) that is attached to the transverse
boom of the station. In order to minimize the gravity gradient
acceleration onboard this laboratory, the center of mass (CM)
of the system must be as close as possible to the stationary
microgravity laboratory.! Consequently, the steady-state ac-
celeration level onboard the elevator ranges from 1.5 x 10-*
10 4 x 10~ as the elevator moves from the upper boom of
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Space Station and the upper
y along the upper tether,
g the length of the lower tether the position of
tion despite variations of the system's distribution of mass.

platform. Variable-g levels
while microgravity experiments
the system

the station to the tether tip,
tether is controlled in order to
SML.

This system has been called
Elevator/Crawler System.

The capability provided by the elevator will allow scientists
1o solve such major unresolved issues of microgravity science
as experimental measurement of threshold values, the influ-
ence of g-jitters and hysteresis problems. Since TECS can
maintain the system CM at the appropriate location by con-
trolling the tether lengths, the elevator can maneuver along
the tether without interfering with the microgravity experi-
ments carried out on the station.

while the length of the lower
maintain the system CM at the

TECS, which stands for Tether

Description of the System

The system is formed by the Space Station with a mass of
306 metric tons and a frontal area of 2.7 x 10° m?, by the
elevator with a mass of 5 metric tons and a frontal area of
10m?, and by two end-platforms m, and m, with a mass of
10 metric tons and a frontal area of 10 m? each. The platforms
are connected by 2-mm-diam Kevlar tethers with the thermal
and mechanical characteristics listed in Table 1.

The distance between the SS and the upper platform is
10 km. The length of the lower tether is adjusted from 10 km
to 15 km as a function of the position of EL along the upper
tether in order to control the position of the system CM.

Several microgravity processes!-? require minimum acceler-
ation levels ranging from 10-2 to 10-* g at low frequencies.
According to Refs. | and 2, the threshold levels of the
acceleration for most of the proposed microgravity experi-
ments exhibit a linear dependence upon the frequency for
frequencies between 10~ and 1| Hz; and a quadratic depen-
dence above | Hz (see Fig. 2 derived from Ref. 1). As shown
in Fig. 2, microgravity processes are mostly sensitive to
disturbances with frequency smaller than 10-° Hz. Conse-
quently, external perturbations with a frequency content com-
parable to the orbita} frequency, such as acceleration terms
generated by aerodynamic forces and J; gravity components,
strongly affect the microgravity experiments.

On the other hand, the noise arising from among others,
structural vibrations. crew motion, vernier thrusters for att)-



MAY-JUNE 1989

tude control and spacecraft dockings, usually called g-jitters,
have frequencies greater than 1072 Hz, and are less of a
problem according to Fig. 2.

In addition, longitudinal vibrations of the tethers are ex-
cited by thermal shocks, which take place at the crossing of
the terminator. Given the actual mechanical characteristics
and lengths of the tethers of our system, these oscillations,
also called thermal g-jitters, have a frequency range from
1073 10 102 Hz. According to Fig. 2, those are of intermedi-
ate importance to the microgravity experiments.

In the next sections we will address the impact of TECS on
the acceleration level onboard the Space Station. We will also

Table I Characteristics of Kevlar tether

Young's modulus 1.96 x 10'" N/m?
Absorpuivity, 2 0.75

Emissivity, ¢ 0.5

Specific heat 2500 J/Kg-K
Linear density 485 x 107 Kg/m
Coefficient of thermal expansion —2x10"°K™!
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Fig. 1 Schematic of tether elevator/crawler system.
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evaluate the acceleration fluctuations, onboard the elevator,
caused by environmental perturbations with respect to scien-
tific requirements.

Mathematical Model

Equations of Motion

The motion of this tethered system is described with respect
to an orbiting reference frame (ORF) that rotates at constant
orbital rate Q and radius R,. The origin of this frame coin-
cides with the initial position of the system CM (see Fig. 3).
The x axis is along the ORF velocity vector, the = axis is along
the local vertical toward the Earth, and the y axis completes
the nght-handed reference frame.

An Earth-centered inertial reference frame (IRF) is also
erected. The X axis points toward the vernal equinox, the Z
axis points toward the North Pole and the Y axis completes
the nght-handed reference frame.

The three-dimensional mathematical model, adopted for
our analysis, has been developed according to the following
assumptions: lumped masses, elastic tethers and generic orbit
of the system.**

If we denote r, as the position vector of the ith mass m, with
respect to ORF, F,,, F,, and F;, as the gravity, drag. and
tensional forces acting respectively upon the ith mass, the
equations of motion of the N masses of the system in vectonal
form are

F=—R,—20x¢ -Qx(Qxr)
+(1/m)(F,, + F,, + Fr)), i=1,.N nH

where the prime denotes denivauon with respect to time.
Equations (1) are a set of N vectonal equations or corre-
spondingly a set of 3 x N scalar equations that have to be
integrated numerically in order to obtain the motion of the
system.

Environmental Models

Because of the very low acceleration levels in which we are
interested, an accurate model of external forces is necessary in
order to simulate with high enough fidelity the effects of the
environment on the system dynamics. The external perturba-
tions considered in the present analysis are the gravitational
forces F,, the aerodynamic forces F,, and the thermal effects
on the tensional forces Fr.

Unlike other tether simulation models,*’ our gravity model
is not linearized and takes into account the second zonal
harmonic of the gravity field (J, term). The J, term has a
secular effect on such orbital parameters of the system as
mean anomaly, argument of perigee, and right ascension of
the ascending node. The J; term also affects the librations and
lateral oscillations (see next section) of a long multimass
tethered system such as the one under analysis.

The drag model is an analytical fit of Jacchia’s 1977 density
model.®® The atmospheric density varies as a function of the
altitude (the Earth's oblateness is also considered) and the
local exospheric temperature. The latter takes into account
the diurnal variation, which is a function of local solar time,
latitude, and solar activity.

The thermal inputs on the tether segments are the solar
illumination, the Earth's albedo, and the infrared Earth radia-
tion. The only cooling process is the emitted radiation. The
position of the terminator is computed as a function of the
Sun’s position along the ecliptic. As the system crosses the
terminator, the tether temperature vanes abruptly; conse-
quently. the tether segments expand or contract and the
tethers’ tensions exhibit steep variations. The N — 1 equations
of the thermal balance of the tether segments are added 1o



406 LORENZINI, COSMO, VETRELLA, AND MOCCIA

Egs. (1). The thermal equation of the jth tether segment is
given by

F = 2r, 2™ + al*"q, v, f, cosy, + 2nr, 0%, ;T — 2nr,0e, T,

! p,cmr;
J=1 N =1 (2)

where
a = Earth albedo (annual average)
¢ = specific heat of jth tether
/, = view factor of jth tether
e = solar flux
" = solar flux incident on tether
/" and I*“™" are equal to zero during the eclipses
r, = radius of jth tether
T, = temperature of jth tether
Ta = Earth temperature
1, = absorbitivity of jth tether
%, = infrared absorbitivity of jth tether
g, = emissivity of jth tether
3, = sun zenith angle of jth tether
o = Stefan-Boltzmann constant
g, = volume density of jth tether

System Dynamics

Degrees of Freedom

The coordinates x,, y,, z, of the point masses with respect to
the ORF are numerically integrated by the computer code
with a fourth-order Runge-Kutta or a predictor-corrector
integration routine.

A second set of coordinates has also been sclected in order
to provide a more direct description of the system dynamics.
This set of coordinates is formed by (see Fig. 3): the in-plane
(in the orbital plane) @ and out-of-plane (orthogonal to the
orbital plane) ¢ angles of libration between the line connect-
ing the end-masses and the local vertical through the system
CM; the N — | lengths of tether segments /, where N is the
number of the Jumped masses and the N — 2 lateral deflec-
tions ¢, of the inner masses with respect to the line through the
end-masses. The coordinates ¢, are further projected onto the
in-plane ¢, and out-of-plane components &,,.

This set of parameters identifies such characteristic oscilla-
tions of the system as the low frequency f librations
(f=10"*Hz), the medium frequency lateral oscillations
(/= 107* Hz), and the higher frequency longitudinal oscilla-
tions (1073 Hz < f < 10~% Ha).

Accelerations

The acceleration measured by an accelerometer package
onboard any platform of the system is the sum of the external,
excluding the gravitational, and internal forces (¢.g., tensions)
acting upon a platform divided by the mass of that platform.
Since the platforms librate approximately like the overall
tethered system, an accelerometer package onboard a plat-
form (e.g., the elevator) does not measure the orthogonal
components of the acceleration caused by the librations (as an
accelerometer package on a pendulum measures zero along
the axes orthogonal to the pendulum).

First we erect the orbiting reference frame Xca¥cmca
(CMRF) that is like the previously defined ORF except for
the onigin of CMRF which coincides with the instantaneous
CM of the system. Since the attitude dynamics of the individ-
ual platforms are not modeled in the present code. the best
approximation to a body reference frame is the system-body
reference frame (SBRF). This frame of coordinates is rotated
by the two angles 0 and ¢ with respect to the CMRF (see Fig.
3). The accelerations measured onbourd the Space Station and
the space elevator are projected onto the SBRF whosce compo-
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nents are the most meaningful for the experimenter. The
acceleration components of the SBRF are as follows: the front
component along the xg, axis, the side component along the
Yss axis, and the longitudinal component along the z,, axis.

Damping of Oscillations

The system has several oscillations, associated with some of
its degrees of freedom, that can affect the “‘quality™ of the
accelerations measured on board the Space Station and the
space elevator.

As pointed out in previous papers,'®!' the tethers introduce
a “noise™ at the longitudinal vibration frequencies that may
impair the performance of the system. Lateral deflections and
longitudinal osciliations also have a nonnegligible effect on
the accelerations on board the elevator.

Al the orbital inclination of 28.5 deg the in-plane perturba-
tions are much stronger than the out-of-plane perturbations.
In-plane oscillations, furthermore, are excited by Coriolis
forces during transient mancuvers of the system (e.g., deploy-
ment and crawling maneuvers), while out-of-plane oscillations
are not. Luckily the in-planc oscillations are much easier to
damp out by means of tether control than the out-of-plane
oscillations.

This section explains briefly the strategy that we adopt for
damping the in-plane oscillations by controlling the lengths of
the tethers. A more thorough treatment of this rather complex
topic, which is beyond the scope of this paper, will be
presented in a future paper.

Damping of longitudinal tether vibrations is provided by
passive (spring-dashpot systems in series with each tether
segment) or active (reel control) dampers. The latter is the
most likely mechanization of the longitudinal dampers be-
cause a passive damper would be required to stretch tenths of
meters. In the active case, the ith reel controls the tension of
the associated tether segment with a proportional-derivative
control law. The ith control law is tuned to the frequency of
the longitudinal oscillations of the ith tether segment. The
derivative term is such as to provide a damping ratio of 90%
of the critical value which provides an effective damping of
the longitudinal (spring-mass mode) oscillations.

The in-plane libration and the in-plane lateral oscillations
are damped out by exploiting the Coriolis forces. The reels
control the tether lengths with terms proportional to the
libration angle ) and the in-planc components of the lateral
deflections #,, in such a way as to extract energy from the
above mentioned oscillations. In-plane Conolis forces have a
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strong coupling with the displacements of the platforms in the
orbital plane. An effective damping of the libration and of the
lateral oscillations can be obtained by controlling the tether
lengths in opposition to the oscillations to be damped out.

As a conclusion to this section we wish to point out that the
longitudinal dampers must be activated throughout the mis-
sion in order to damp out the oscillations arising from the
thermal shocks. The in-plane dampers, on the contrary, are
only necessary during transient phases (e.g., deployment and
crawling maneuvers). The in-plane dampers, however, can be
conservatively activated during steady-state phases (e.g., sta-
tion-keeping) in order to improve (slightly) the performance
during such phases. Out-of-plane dampers are not necessary
under normal conditions. Active thrusters could be used
sporadically under emergency conditions.

Elevator’s Control

The most peculiar feature of TECS is the capability of the
elevator to crawl along the upper tether in order to produce
an assigned g profile vs time onboard the elevator. One of
these maneuvers consists of moving the elevator from its
initial location, and consequently initial g level, to a final
position with a different g level. This maneuver is usually
called g tuning and it is designed for exploring acceleration
thresholds of microgravity experiments.

A control law, suitable for this maneuver, must meet the
following requirements: 1) acceleration and deceleration
phases as smooth as possible. 2) small perturbations of the
system dynamics, and 3) capability of maintaining the acceler-
ation level onboard the Space Station below 1077 g.

Toward this end we derived a modified hyperbolic tangent
control law!' (MHT) with the addition of a constant velocity
phase.'* The constant velocity phase starts at the end of the
acceleration phase when the maximum velocity is reached.
and the acceleration is equal to zero. The hyperbolic tangent
is resumed at the end of the constant velocity phase to
decelerate the elevator. Since the hyperbolic tangent is asymp-
totic, a cut-off distance ¢ from the target point on the tether
has been adopted in order to limit the total travel time. In
terms of the variation of the traveled tether length AZ, vs time,
the control law for the elevator's motion can be expressed as
follows:

Acceleration
1<t,
A/, = A/ [tanh(ar)])” (3a)
Constant Velocity

1, St<ig

11—t
A/, = Al [tanh(a )]* + A 4 (3b)

lg — 14

Deceleration

gs1<, ‘
Al = A/ {tanhaft — (15 — 1,)]}7 + AL (3c)
where

A/ = tether length traveled during acceleration plus tether
length traveled during deceleration
A/” =tether length traveled during the constant-velocity

phase
1, =time at which the maximum velocity is reached
1z =tme at the end of the constant-velocity phase
1, =ume at the cut-off distance o from the target point
x = rale parameter

= shape parameter
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~ The ratio of the tether length traveled during acceleration plus

deceleration to the total length traveled is the dimensionless
parameter y. Calling the total length traveled A/, ,, we have

AfLr= AL + Al (4a)
Al = xAlr (4b)
AfZ (1 — x)Abr (4c)

By using the three control parameters a, y, and y, the total
travel time. the maximum crawling velocity, and the accelera-
tion profile vs time can be conveniently adjusted to meet the
first two requirements. The transition between two sequential
segments of the control law is smooth since the acceleration
has no discontinuity (specifically the acceleration is equal to
zero at transition). Consequently, the elevator crawis along
the tether according to three sequential and smoothly contin-
uous phases.

In order to meet the third requirement, the lower reel
controls the lower tether according to Eq. (3), where the
length vaniations A/ and A/ have been scaled down by the
factor m,jm,. Because of this compensatory control, the sys-
tem CM is maintained very close to its initial position duning
the elevator’s maneuver.

Since a long Kevlar tether is highly deformable, the total
traveled length A7, must be corrected for the elastic deforma-
tion of the tether if the desired final distance between the
Space Station and the elevator is to be attained with good
accuracy. This corrective term is easily computed before
starting the maneuver.

As a result of a parametric analysis of the MHT control
law, we found that for a typical long-distance-maneuver (e.g.,
A/, = 4km) an appropriate choice of the controt parameter
isa=10"%s"" y =4, and x =0.2. The cut-off distance ¢ was
assumed equal to 1 m. The results of a simulation run, in
which the elevator maneuvers according to Eqs. (3) and the
previously selected control parameters, is shown later on in
this paper.

Numerical Results

Station-Keeping

The first set of numerical results are relevant to a station-
keeping simulation run. The system is initially at rest and
aligned with LV. The elevator is at 1 km from the Space
Station and the lower tether is 10.5 km long. The sun is at the
summer solstice and the initial tether temperature is 290 K for
all tether segments. All the environmental perturbations mod-
eled in our code are acting upon the system. The longitudinal
and in-plane lateral/librational dampers are activated during
the entire simulation run. The duration of the simulation run
is 20 orbits in order to show the very long frequency beating
phenomena. The Space Shuttle orbits at an initial altitude of
450 km and an inclination of 28.5 deg. The orbital period is
equal to 5615s.

The acceleration components measured onboard the Space
Station and the relative spectra are depicted in the following
figures: the front component and its spectrum in Figs. 4a and
4d: the side component and its spectrum in Figs. 4b and de;
the longitudinal component and its spectrum in Figs. 4c and
4. None of the spectra of this section show the dc compo-
nents that have been removed from the acceleration compo-
nents before computing the fast Fourier transforms.

The amplitudes of the front and side accelerations are of
the order of 10~%g. The amplitudes are influenced by the
librations and their coupling with the lateral oscillations. In
particular, the side component shows a beating phenomenon
between the out-of-plane libration and the out-of-plane lateral
oscillations. The spectrum of the front accelerauon compo-
nent (Fig. 4d) shows a main harmonic at the orbital frequency
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(/=18x10"*Hz) and a smaller harmonic at twice the
orbital frequency, both caused by the J, gravity term and the
drag. In particular the Space Station accounts for the major
contribution to the drag. The spectrum of the lateral accelera-
tion component (Fig. 4e) shows two harmonics at the same
frequencies as the previous case but with inverted amplitudes.

The longitudinal acceleration exhibits a dc component of

3.6 x 1077 g arising from the offset between the system CM
and the orbital center (the zero acceleration point of the
system). This dc component can be eliminated by adjusting
the length of the lower tether in order to place the orbital
center at the SML onboard the Space Station where the
acceleration is measured. In this simulation run, however, we
have decided to show the effect of the above-mentioned offset
upon the acceleration level onboard the SML. The longitudi-
nal acceleration component exhibits relatively strong thermal
Jitters, which are caused by the crossing of the terminator and
are subsequently abated by the in-line dampers (Fig. 4c). The
spectrum of the longitudinal acceleration component in Fig.
4f shows frequencies, higher than the orbital frequency, of
approximately 3 x 10~* Hz. which are typical of longitudinal
oscillations (excited by thermal shocks).
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This analysis demonstrates, within the assumptions of our
model, that TECS provides a negligible contribution to the
acceleration noise onboard the Space Station.

The acceleration components measured onboard the eleva-
tor and the relative spectra are depicted in the following set of
figures: the front component and its spectrum in Figs. 5a and
5d: the side component and its spectrum in Figs. 5b and Se;
and the longitudinal component and its spectrum in Figs. 5¢
and 5f. The front and side components show harmonics at the
orbital frequency and at twice the orbital frequency that are
caused by the J, term and by the drag. The drag also accounts
for the dc component of the front acceleration. The higher
frequency harmonics in the spectra are generated by thermal
shocks. The orders of magnitude of the Auctuations of the
front and side components are 10-’ and 10-%g, respectively.

The longitudinal acceleration component is shown in Fig.
5c. The longitudinal acceleration has a dc component of
—3.86 x 107% g, which is provided by the gravity gradient
caused by the offset between the EL and the orbital center.
The harmonic at the orbital frequency (see Fig. Sf), with an
amplitude of the order of 10~ % g, is caused by the J, gravity
term. The J, component forces the system to librate, hence

P

o
L]

Q
T V‘Tﬁ—_l_]’*T_‘
[l

'
o

LA

EL ACCEL. FRONT COMPONENT (g) x 103
;
rs
T T

=— MAGNITUDE OF FINAL ACCELERATION

-20{_1_11-.Ix-AIA‘,le.lAA:l..‘lA.J
0 2 4 [ 8 10 12

1) TIME (sec) x 103

‘Lllllllnjl‘lnnnlnn41

Iy

E[rl!]vvr[vlvr!rl[rt:]vvvllvylr

EL ACCEL. LONGITUDINAL COMP. (g)x 10~3

[ MAGNITUDE OF FINAL ACCELERATION

TS S I S RN S T

o 2 4 6 8 0 12 14
TIME (sec) x 103

il

d)

Fig. 6 Dynamics properties of elevator during a crawling maneuver: a) distance, b) speed, ¢) front acceleration, and d) longitudinal acceleration.
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stretching the tethers with the libration frequency. The tether
tensions produced by this mechanism balance out at the
system CM. Since the elevator i1s offset from the CM. the
J.-induced tether tensions apply a differential force to the ele-
vator, which accounts for the spectral line at the orbital fre-
quency. The higher-frequency harmonics of the longitudinal
acceleration component are centered around the longitudinal
natural frequency of the upper tether system. These higher-
frequency components are generated by thermal shocks.

Crawling Maneuvers

We show in this section the results of a typical crawling
maneuver. The system is initially at rest and aligned with LV.
At time 1 = 1000 s the elevator starts moving, according to
Egs. (3), from the initial distance of 1 km from the Space
Station to the final distance of S km from the Space Station.
The control parameters are those selected in the previous
section. At the same time, the length of the lower tether is
controlled in order to compensate for the elevator’s displace-
ment. In this case the thermal perturbations are negligible
with respect to the variations of the acceleration level and
therefore have been neglected.

The actual distance from the Space Station and the con-
trolled distance traveled by the elevator are depicted in Fig.
6a. The elevator-controlled velocity is shown in Fig.-6b. The
front and longitudinal acceleration components onboard the
elevator are shown in Figs. 6c and 6d. Both the acceleration
components onboard the elevator are compared to the respec-
tive unperturbed components (ideal case of an elevator that
moves without perturbing the system). The front component
during the maneuver is affected by the Conolis force, while
the longitudinal component is mostly affected by the elasticity
of the system. The side acceleration component is not shown,
because it is negligible with respect to the other components.

The acceleration components onboard the elevator, of
which the longitudinal component is the greatest, have a
behavior close to the ideal and achieve smoothly the steady-
state values at the end of the crawling, as required by a
g-tuning type of maneuver.

The acceleration components onboard the Space Station,
along the SBRF, are depicted in Fig. 7. Since the lower plat-
form is controlled in such a way as to balance the elevator’s
motion, the acceleration level onboard the Space Station are
well within the requirement for microgravity expenments.

Conclusions

The proposed tethered system supplements the Space
Station with a faciity for carrying out experiments in a con-
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trolled gravity environment. The acceleration level onboard
the elevator can be tuned between 1.5 x 107> and 4 x 1073 g,
making possible the exploration of threshold acceleration
levels for several experiments proposed by the microgravity
scientific community.

The “quality” of the acceleration onboard the elevator is as
follows: the longitudinal component is the most critical, with
harmonic components of 107 ¢g at frequencies lower than
107*Hz and of 107 g for frequencies between 10~° and
1072 Hz. The front component of the acceleration depends
primarily on the drag of the Space Station and ultimately on
its configuration. The side component of the acceleration is
negligible. The quality of the acceleration onboard the eleva-
tor is therefore better than onboard the stationary micrograv-
ity laboratory of the Space Station.

This tethered system moreover, can control the vertical
position of the system center of mass despite a modification of
the system’s configuration. In particular, we have demon-
strated the system’s capability of maintaining the acceleration
level on the station within the microgravity requirements,
notwithstanding the elevator’s maneuvers along the upper
tether in performing g-tuning experiments.

The proposed system does not have an appreciable impact
on the acceleration level onboard the Space Station. The
tethered-system-related noise is a few orders of magnitude less
than the 10~ % g acceleration level specified for the station.
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Abstract—This paper analyzes the propagation of disturbances along the upper-tether of the Tether
Elevator:Crawler System. Both longitudinal and transverse waves are investigated as the waves propagate
from the station to the elevator, and beyond to the upper-platform. The model takes into account the
effects of gravity gradient and material damping. An estimate of the various damping mechanisms affecting
transverse waves is also provided in the paper. The frequency response functions at the elevator and at
the upper-platform are computed for either a longitudinal or a transverse perturbation of the tether

attachment point to the station.

1. INTRODUCTION

The Tether Elevator Crawler System [1] (TECS) is
designed for carrying out expenments in a controlled
gravity environment. A schematic of TECS is shown
in Fig. 1. An elevator (EL) is attached to a 10-km-
long tether which connects the station to the upper-
platform (UP). On the other side of the station the
lower-tether system is deployed. The length of the
lower-tether i1s adjusted in order to keep the orbital
center (the point of zero apparent acceleration) of the
whole system at the desired location on the station
during the elevator’s maneuvers.

By moving the elevator along the tether, the level
of apparent acceleration on-board the elevator can be
varied according to a pre-set profile. The quality of
the acceleration level is an important requirement for
those conducting experiments in the microgravity
laboratory. Suntable control laws for the elevator
motion have been devised [1.2] whereby the accelera-
tuon fluctuations during the elevator motion are
smaller than 10% of the maximum value of the
steady-state acceleration.

Another important source of acceleration noise,
however, is the space station itself. Any perturbation
that reaches the attachment point of the tether to the
station propagates along the tether and eventually
perturbs the gravity laboratory on the elevator. An
analysis of how the perturbation propagates along
the upper-tether of TECS is therefore of primary
importance for assessing the actual quality of the
acceleration on the elevator.

The space station (SS) is a source of non-negligible
disturbances at a wide range of frequencies. In gen-
eral. the low frequency (around 107)Hz) disturb-
ances are associated with aerodvnamic and orbital

tPaper presented at the Tether Dynamics Workshop, San
Franasco. Calif. US A 16 Mav 1989

perturbations, the medium frequency (from 107 to
10 Hz) disturbances with the structural vibrations
of the station; and the high frequency (> 10 Hz)
disturbances with rotating machinery and human
activity on-board the station.

The wave propagation along the tether is influ-
enced by the tether material damping and to some
extent by the dissipative medium surrounding the
tether and the platforms. The tether is a complex
non-isotropic continuum and the damping varies
with the tether length according to a function which
depends on the damping model adopted. Further-
more, material damping of kevlar™ tethers is signifi-
cantly affected by temperature.

Recent investigations [3,4] have shown that the
damping of a kevlar tether is best represented by a
combination of viscous and structural damping. This
conclusion, however, is based upon a few experimen-
tal results obtained from short tether samples. Given
the level of uncertainty of the test results, the most
accredited value of material damping ranges between
1 and 5% for the first longitudinal mode of a 10-km
tether.

The material damping affects primarily the propa-
gation of longitudinal waves, while it has a much
smaller effect on transverse waves[3]). Transverse
waves are also influenced by the interaction with the
surrounding atmosphere more than longitudinal
waves. A preliminary estimate of the damping pro-
vided by these mechanisms with respect to transverse
waves is given later on in the paper.

2. MATHEMATICAL MODEL

Figure 2 shows the upper portion of TECS and the
reference frames. If we assume the realistic case of
small perturbations, we can treat the longitudinal and
the transverse waves independently [5]. For each set
of waves we will compute the dynamic response to a
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Fig. 1. Schematic of Tether Elevator/Crawler System

(TECS).

sinusoidal excitation of the tether attachment point
to the space station, that is the frequency
response function (FRF). The perturbation acts
along the tether axis for the longitudinal waves
while it acts transversely to the tether axis for
the transverse waves. We also assume that the
elevator and the upper-platform are point
masses. We start by analyzing the longitudinal
waves.

2.1. Longitudinal waves

With reference to Fig. 2 the equations of motion
and the boundary conditions are as follows [6]:

&y &) % .
H—=Z=SEA+EA—>—=+3Quu j=1,2
or 1) €y
2 u, ¢ ) du,
m,— = —{EA +E'A4 7}—_'—'+ ¥muy, =1L,
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L
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Y, Tz1 l
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1o the station "

Fig. 2. Schematic of upper-tether of TECS and reference
frames.
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w0, 0=u(L,
u =expliwt) z, =0

where 2z, and z, are the vertical coordinates for tether
segments | and 2, 4, and y, the longitudinal tether
stretches, u the tether linear density, Q the orbital
rate, m; and m, the masses of the elevator and the
upper-platform respectively, E4 the tether stiffness,
and E’A4 the tether axial viscosity. In eqns (1) we have
adopted a viscous damping model for the tether. This
is a reasonable approximation given the uncertainties
regarding material damping of long keviar tethers.
Results obtained with a viscous damping model can
be applied to a different damping model in the
neighborhood of a given frequency for which an
equivalent viscous damping coefficient has been com-
puted. The boundary conditions express the balance
of the forces on masses m, and m,, and the tether
continuity at the elevator.

After defining ) =u,/L,, u;=w/L,, z,=2,/L,,
z=2/L,, t=M and w =/Q we obtain non-
dimensional equations as follows:

ow,  f  0)ék
el 4 b IV Ly j=1,2
ot ‘f{ +baz} a2 T

d%u ) 2 )ou
5172= —e%aM,{l +baﬁ+yuz =1
d%u, R 9 | éu,
e 1+b—
ar? e'a'y'{ +ba:}a:,
0 :61(
-C%aliz{l'f-ba azz+7“1 #))

Z;=0

u; (0, 1) =u,(1,1)

z =1,

u; = exp(iwt) z,=0.

The non-dimensional coefficients in eqns (2) are
given by: € =c/QL; e¢=c/QL,; a = Lu/m,;
ay=Lujmy; A=LJL;, h=L/L=1-4; b=
E'AQ/EA and y = 3, where ¢ = (EA/u)'" is the longi-
tudinal wave speed, L, and L, are the lengths of the
two tether segments, and L is the overall length of the
upper-tether.

Equations (2) are a set of linear, partial differential
equations with separable variables. Substitution of
u, = R, (z,) exp(iwt) and u, = R,(z,) exp(iwt), where
R, and R, are complex numbers, into eqns (2) leads
to the following ordinary differential equations:

2

o'R
= +BR=0 j=1,2
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) 3R
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23
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R
—wlR = —¢ia i, {1 +iwb} a—_—'— €3a, 4,
0z,
oR,
x{l +iwb}—+7yR zy=1, =0 (3¢)
0z,
Ry(0) = R, (1) (3d)
R0)=1 (3¢)
where
B= /
= fle
ﬂz = fle,. @)
The solutions of eqns (3a) are R, = 4, sin(f,z,) +

B, cos(f,z,) and R, = A,sin(f,z,) + B,cos(B,z,).
After substitution of the above expressions into the
boundary conditions (3b}<(3e) we finally obtain the
FRFs at the elevator R, (1) and at the upper-platform
R,(1) as follows:

R/()= |:cos B, — 6,sin B,
__sin B, sin B, + 6. sin B, cos ﬂz]“

cos B, — &, sin §,

R,() =R (1O, (5)
where
8= PBijay); b:= Brfar 4y
and
6, = [cos B, — &, sin B,]7! 6)

is an attenuation function which expresses how much
the longitudinal waves are abated when they propa-
gate from the elevator to the upper-platform.

Since the equations of motion are linear the FRF
represents the displacement or acceleration at the
elevator or at the upper-platform for a unit displace-
ment or acceleration, respectively, at the station.

2.2. Transverse waves

For thin and long tethers (i.e. A/L <1 where h is
the tether diameter) like those under consideration,
the bending stiffness can be neglected and the tethers
treated as perfectly flexible strings.

For uL < m, and m,, as in TECS, the tensions in
the two tether segments are approximately constant
along the tethers. Consequently, the equations of
motion for the transverse waves have the same struc-
ture as those for the longitudinal waves. Further-
more. since the horizontal gravity gradient is null in
the orbital plane (in-plane) and different from zero in
the transverse plane (out-of-plane), the equations of
motion in the two planes are slightly different. The
out-of-plane equations are as follows [S]:

where w, and w, are the out-of-plane displacements of
tether segments 1 and 2 respectively, T, and T are the
average tensions in tethers 1 and 2, and 4 is the
viscous damping coefficient expressed in N-s (equival-
ent to £’4 of longitudinal waves). In eqns (7) we have
adopted a viscous damping model for the transverse
waves. This is only a first order approximation as
explained later, which, however, leads to a simple
analytical solution of the equations of motion. This
simplification is acceptable in light of the numerous
unknowns involved in estimating the damping of long
kevlar tethers.

The in-plane equations of motion are readily ob-
tained by simply setting the gravity gradient term (i.c.
the Q2-term) in eqns (7) equal to zero and by substi-
tuting the in-plane displacements v, for w;,. The
average tether tensions in eqns (7) are given by:

T,=30'm, L
T,=T,+3m,L,. (8)

After defining non-dimensional variables as
w, =w,/L, wy=w/L,, w =@/Q and 1 = £} we ob-
tain non-dimensional equations and boundary con-
ditions as follows:
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where v, =c¢,/QL,, v,=¢/QL,, d =dQ/T,
d,=dQ|T,, y = —| for the out-of-plane waves and
y =0 for the in-plane waves, ¢, =(T,/u)"? and
¢, = (T,/u)'? are the transverse wave speeds in tethers
1 and 2, while the other symbois have been previously
defined. By a procedure similar to that followed for
the longitudinal waves, we obtain the FRF for trans-
verse waves at the elevator TR, (1) and at the upper-
platform TR,(1) as follows:

TR ()= |:cos ¢, — 0, sin ¢,

sin ¢, sin ¢, + g, sin ¢, cos ¢, |~
-1 -
cos ¢y — G, 8in ¢,

TRy(1)=TR,(1)0 (10

where @ is the transverse wave attenuation function
given by:

O: = [cos ¢, — o, 5in §;]7! (11)
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and

1 W +7y
b= [t
V] 1+lwd]
1 [wi+y
¢2-v—2\/l+iwd2

o, = ¢, /a4
0, = /a4,
1=(T,/T,)'"~ (12)

By setting y =0 in eqns (9)«(12), we obtain the
corresponding expressions for the in-plane transverse
waves.

3. DAMPING OF TRANSVERSE WAVES

The damping of transverse waves is much smaller
than that of longitudinal waves. Since no bending
stiffness is considered, there is negligible linear damp-
ing of lateral oscillations in free space. Light damp-
ing, however, is provided by three different
mechanisms: (1) through orbital coupling (in-plane
only); (2) through non-linear coupling with the tether
stretch; and (3) through interaction with the atmos-
phere.

Mechanism (1) operates in-plane only: the orbital
coupling between the in-plane transverse displace-
ment and the longitudinal modes (through Coriolis
forces) produces a small linear damping of the in-
plane transverse oscillations. In Ref. [3] the modal
damping ratio is computed for linear oscillations of
a perfectly flexible, long tether with constant tension,
orbiting in space. With the parameters of TECS we
obtain a damping ratio for the first mode of =~ 10-7%
which is negligible.

Mechanism (2) provides damping through the non-
linear coupling of transverse displacements (in-plane
and out-of-plane) and longitudinal stretch. A ﬁx:st
approximation of the non-linear damping ratio due
to non-linear coupling is computed in Ref. [3] by
equating the energy dissipated in lateral oscillations
to the energy loss associated with the elongation
engaged in a given lateral vibration mode. Further-
more, the longitudinal strain associated with the
lateral deformation is assumed to be uniformly dis-
tributed along the tether. Consequently, the non-
linear modal damping ratio for a tether. segment of
length L. with an end-platform of mass M is given by

3}

3 ’
5‘-:2(5) — £ sy 13)
4 QLM /n /3+7
where & is the mode number, = uZ /M the ratio of
the tether mass to the platform mass, and B, the
amplitude of the kth mode. After assuming a ratio
B,/L =0.0! for the first mode. E'4 = 1100 N-s,
which is consistent with a damping ratio of 1% for
the first longitudinal mode. L = 10 km. and M = |0

tons, we obtain a damping ratio for the first trans-
verse mode of about 10-3%,

The adoption of this value of damping ratio for
interpreting the numerical results for transverse
waves (obtained with a viscous model) should be
done with full awareness of the limitations involved.
The viscous model, in fact, provides increasing
damping for an increasing value of frequency,
while the non-linear damping is proportional to the
product k*B} and hence to the energy stored in the
mode. Furthermore, unlike the viscous model, the
non-linear damping depends upon the modal ampli-
tude.

Mechanism (3) provides a negligible contribution
to damping of transverse waves at the orbital altitude
of TECS for the frequencies of interest.

In conclusion, even if the non-linear damping ratio
is three orders of magnitude smaller than that of
longitudinal waves, mechanism (2) provides the most
significant damping for transverse waves with non-
negligible modal amplitudes.

4. NUMERICAL RESULTS

Numerical resuits are based on the following par-
ameters for TECS: m,(EL)= 5 tons, m,(UP) =10
tons, u =49 x 10 kg/m, L =10km. Q=1.119 x
10~ rad/s (i.e. an orbital altitude of 450 km) and
EA4 =61,645N.

4.1. Longitudinal waves

Figure 3(a)<(c) show the magnitude of the FRF at
the elevator vs the dimensional frequency for 4, = 0.1,
0.5 and 0.9, which correspond to distances between
SS and EL of 1, 5 and 9 km. The three plots in each
figure are for a damping ratio of the first mode of a
10-km tether of 0, 1 and 5% respectively. The reson-
ance peaks for zero damping are, of course, infinite
and are shown in dashed lines in the figures. Figure
3(d) is a 3-D plot of the FRF magnitude at the
elevator, for 4, =0.1, vs frequency and vs damping
ratio. Figure 3(e) is a 3-D plot of the FRF magnitude,
for a 1% damping ratio, vs frequency and vs frac-
tional distance 4,.

It is clear from these figures that a light material
damping is sufficient to provide a strong attenuation,
for frequencies > 2 Hz, of the longitudinal waves
which propagate from the station to a 1-km-distant
elevator. The attenuation increases dramatically as
the elevator moves further away from the station and
the cut-off frequency decreases to about | Hz.

Figure 4 is a 3-D plot of the magnitude of the
attenuation function @, for a damping ratio of 1%,
vs frequency and vs fractional distance A It is
evident from the figure that a small materia) damping
is sufficient to provide a strong attenuation of the
longitudinal waves propagating beyond the elevator.
The elevator acts as an effective attenuator for the
upper-platform of longitudinal perturbations gener-
ated at the station.

i
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(e}

Damping=1%

o/

EL, FRF magnitude {log)

Fig. 3. (e)

Fig. 3. Magnitude of frequency response function (FRF) at elevator for longitudinal waves vs frequency,
fractional distance 4, = L,;L. and tether material damping.

4.2. Transverse waves

Figure S(a){c) show the magnitude of the FRF at
the elevator for out-of-plane transverse waves vs the
dimensional frequency for fractional distances
4,=0.1,0.5 and 0.9. The three plots in each figure are
for a viscous damping ratio for the first mode of a
10-km tether of 10~*, 10~" and 10~ '% respectively.
For zero damping the resonance peaks would be
infinite.

The results for in-plane transverse waves do not
differ appreciably from those of out-of-plane waves

Damping = 1%

6, magnitude (Log)

because the gravity gradient term plays a minor role
in the transverse wave dynamics.

By assuming a viscous damping ratio of 10~°% for
transverse waves (see previous section for the limi-
tations involved in this assumption), the transverse
perturbations in TECS are only moderately attenu-
ated as they propagate from the station to the
elevator. Additional damping devices may be added
to the system in order to improve the attenuation.

Figure 6 shows the magnitude of the attenuation
function @; for a damping ratio of 1073%, vs
frequency and vs fractional distance 4;. The elevator

Fig. 4. Magnitude of lonmtudinal waves attenuation function (see text) vs frequency and fractional
distance for 1°. material damping.
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acts as an attenuator for the upper-platform

of transverse perturbations generated at the
station. This may suggest a way (o design a passive
damper to be placed between the station and the
elevator for increasing the attenuation of transverse
waves,

5. CONCLUSIONS

Perturbations propagate along the tether of TECS
from the station to the elevator and beyond. to the
upper-platform. However, a small value of viscous

Damping = 1073 %

& magnitude (Log)

material damping (1-5% damping is estimated for
kevlar tethers) is sufficient to abate dramatically the
longitudinal waves with a frequency above 1-2 Hz.
The attenuation of the longitudinal waves increases
with the distance of the elevator from the station.

Transverse waves, on the contrary, are much less
attenuated because the only significant damping is
through non-linear coupling with the longitudinal
tether stretch. The damping provided by this mechan-
ism depends upon the transverse modal amplitude
and 1s about three orders of magnitude smaller, even

Fig. 6. Magnitude of transverse waves attenuation function (see text) vs frequency and fractional distance
for 107%% viscous damping.
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for non-negligible modal amplitudes (e.g. amplitude
of the first transverse mode = 1% of the tether seg-
ment length), than the londitudinal damping.

For both longitudinal and transverse waves, the
elevator attenuates the perturbations propagating
from the station to the upper-platform. This con-
clusion may suggest a way of designing a passive
attenuator for transverse waves to be placed between
the elevator and the station.
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Attitude Dynamics of the Tether Elevator/Crawler
System for Microgravity Applications™

Abstract The Tether Elevator/Crawler System (TECS) consists of two end platforms tethered
to opposite sides of the Space Station. A variable-gravity laboratory is located onboard
an elevator which can crawl along the upper tether. This paper analyses the elevator’s
attitude dynamics in order to evaluate its effect on microgravity applications. To this
end, a simulation model is described and numerical results are given for a steady-state
case. It is shown that the elevator arttitude dynamics, without attitude control,
contribute additional spectral lines to the acceleration noise.
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1. Introduction

UPPER PLATFORM
m
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= SPACE STATION

3

LOWER PLATFORM

m
4

Figure 1. Schematic of the Tether
Elevator/Crawler System (TECS)
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The Tether Elevator/Crawler System (TECS) is designed for conducting
experiments in a controlled gravity environment. Two 10 km-long tethers are
deployed on opposite sides of the Space Station (SS). The variable-gravity laboratory
is placed onboard an elevator (EL), which can crawl along the upper tether (Fig. 1).
Because of the dual-tether configuration, variable gravity profiles can be generated
onboard the elevator while the acceleration level on board the stationary microgravity
laboratory of the Space Station is maintained below 107° g.

The analysis carried out in Reference 1 demonstrates that TECS makes a negligible
contribution to the acceleration noise level onboard the Space Station. The tether-
related acceleration noise is, in fact, a few orders of magnitude smaller than the
required 10™° g. On the other hand, by moving the elevator along the upper tether,
the variable-gravity laboratory on the elevator experiences an acceleration level that
varies with the distance between the elevator and the system’s centre of mass (CM).
From the upper boom to the tether's tip, the acceleration level ranges from
1.5x107% g 10 4x1073 g, making it possible to explore thresholds and hysteresis
phenomena.

Onboard an elevator positioned 1 km from the Station, the acceleration fluctuations

Nomenclature

d = distance defined in Figure 3
E = Young’s modulus

F = force

L,L.I = principal moments of inertia
{ = tether length

m = mass

M, M M; = torque components

M, = matrix defined by Equation (4)

M. .5 = rotation matrix

Mg, = rotation matrix

r = tether radius

R = position vector with respect to the inertial reference frame
T = temperature

Wy = unit vector from the k-th to the (k+1)-th mass
\% = velocity with respect to the atmosphere

x,y.2 = reference frame defined in Figure 3

XYz = inertial reference frame

a8,y = pitch, roll, yaw angles

€ = thermal expansion coefficient

¢ = damping coefficient

P = position vector with respect to the body reference frame
V.0, = Euler’s angles of the body reference frame
w = body frame angular velocity

Qg = Earth’s angular velocity

Subscripts

1,2,3 = body reference frame

a = aerodynamic

M = centre of mass

d = damping

e = elastic

g = gravitational

k = k-th lumped mass

{ = lower tether

0 = initial

u = upper tether

ESA Journal 1990, Vol. 14



(g-quality) are about 10 % g at frequencies lower than 10~ Hz, and about 10’ g
for frequencies of between 10~ Hz and 10 72 Hz. Algorithms to control the motion
of the elevator have also been derived in Reference 1. These control laws allow the
elevator to travel over long distances without inducing a significant acceleration noise.

The analysis carried out thus far on the dynamics of TECS has treated the platforms
of the system (e.g. the Station and the elevator) as point masses. The influence of the
rigid-body dynamics of a particular platform upon the acceleration levels has been
neglected so far. This paper, on the other hand, evaluates the contribution of the rigid-
body dynamics of the elevator to the acceleration noise level onboard the elevator
itself. To this end. in addition to the model described in Reference 1, a different
numerical simulation program has been developed. A description of this model will
be presented in the first part of the paper.

Numerical results show that the rotational dynamics of the elevator contribute
additional spectral lines to the acceleration noise. Because of the quasi-symmetrical
external forces, the centre of rotation (CR) of the elevator is very close to its centre
of mass. Consequently, the effects of the rigid-body dynamics are minimised when
the microgravity experiments are placed at the elevator’s centre of mass.

The rotation-related spectral lines are also evaluated by applying Fast Fourier
Transforms (FFTs) to the acceleration components onboard the elevator. The
frequencies of the new spectral lines, obtained from the dynamic simulation, are then
compared to the theoretical values of the attitude frequencies. Finally, the new
acceleration spectra are examined in the light of acceptable threshold levels for
proposed microgravity experiments versus the frequency of disturbances.

The three-dimensional model is based on the discretisation of the system by means
of lumped masses, connected by massiess springs and dashpots2 (a lumped mass is
a point mass where the forces are applied and to which an area is assigned to take
into account the atmospheric drag). To the area and mass of each lumped mass, those
of the half-tether connecting them to the adjacent lumped masses are added. Depen-
ding on the trade-off between computing time and accuracy of the model, the tether
too can be simulated by lumped masses. In this case, up to 12 masses can be lumped
at different positions along the tether (Fig. 2).

_E -F
e, k-1,k —d,k-1,k

k

V —R +R xQ
“k "k "k "e

ESA Journal 1900, Vol 14

2. Mathematical model

Figure 2. Forces acting on a lumped mass
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The system motion is described by force- and energy-equilibrium differential
equations, the unknown quantities in which are the temperature and the components
of the position and velocity vectors, in the right-handed inertial reference frame
(origin at the centre of the Earth, X-axis directed along the first point of Aries, X-Y
equatorial plane)’,

The environmental perturbations considered in the present analysis are: the
gravitational force, including the second zonal harmonic of the gravity field, the
aerodynamic forces and the thermal effects on the tensional forces.

The atmosphere is assumed to rotate with the Earth’s ellipsoid and its density is
computed using the US Standard Atmosphere®. For each lumped mass. the aero-
dynamic drag is evaluated considering the velocity of its centre of mass relative to
the atmosphere.

The tether thermal inputs are: the solar illumination and the flux due to the atmos.-
pheric drag. The only cooling process is the emitted radiation. Since the tether length
variation strongly affects the attitude dynamics of the platform, particular attention is
devoted to the evaluation of the partial and total eclipse conditions of each lumped
mass®, in order to improve the accuracy of the modelling of the tether’s stretching
due to thermal effects.

In the following, the attitude of the elevator is simulated by means of kinematics
and Euler’'s moment differential equations:

xg« 1 sin ¢ cos ¢ 0 w)
9| = - Cos ¢sind —singsindg 0 w; (1
@ sind | _ g @Ccos ¥ —cos ¢ cosd sind ws

L'.)l = [Ml + w3w3(13—13)]/1,

[MZ + w,w3(l3—11)]/12 (2)

£
il

wy = [M; + O A I D

The unknowns in the above equations are the Euler's angles of the body reference
frame (whose axes coincide with the principal axes) with respect to the inertial
reference frame, and the body-frame components of the inertial angular velocity
vector.

The platform is assumed to be a rigid body, approximated by simple geometrical
elements (Fig. 3).

The torques are computed taking into account the aerodynamic drag and the tether
visco-elastic force, without the gravity gradient and attitude control.

The total aerodynamic torque is computed by adding the contribution of each
geometrical element (spheres, fins, cylinders), and neglecting the spin effect”.

The tether tension is computed as follows:

Ezr’
Foikm = beier = losswsr N+HeT=To N ey,
lo.k.k+l
Errimm 12 . .
Fivier = 21’[ el J [((Ris) — Ry - ey Jugyy 3y
lokks1(me+m )

The transformation between the inertial reference frame and the body frame is given
by a 3-1-3 rotation matrix M,s,).

The attitude angles are defined with respect to a right-handed reference frame. with
origin in the centre of mass. and unit vector components. given by the rows of the
following matrix:

ESA Journal 1990, Vol 14
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[(=Wryxi-R)ly [(=Wix(—R)]y
[~ W)x(—R)| [(~=W)x(—R})|
Wy =Wy
Wi W1
Rx Ry

IR| (R}

where W = RxR.

The attitude angles «.

«a = sin

-1

(_03_1)

B8 = sin”! %2
cos
v = sin”! A
cos @

where the a,, are the elements of the rotation matrix

T
Myag = My My,

{(-W)x(~R)|;

[{—=W)yx(—R)|

(—-W)z
W]

B and v are computed using the equations:

Figure 3. Elevator attitude reference frames

4)

(5)

(6)

The system orbital and attitude dynamics are computed by solving a set of ordinary

differential first-order equations, using Gear's stiff method®. which includes an ONIGINAL PACE R

additional equation for each damper in order to control tether longitudinal oscillations OF POCR QUALITY

arising from thermal shocks'.
Geur’s algorithm adjusts the step size in order to achieve fast integration and model

the high-trequency oscillations. The foregoing requires a preliminary analysis of these
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frequencies and an accurate selection of the maximum allowed step size in order to
obtain a constant sampling step.

Particular attention must be devoted to initial conditions and physical parameters
characterising the system. An orbit-generator program is used to compute the initial
position and velocity vectors of each lumped mass: in addition to the Keplerian orbit.
a perturbed orbit is described by the first-order Kozai theory®. The unstretched
tengths of the tethers and the initial conditions for longitudinal oscillation dampers are
computed by means of the equilibrium equation for each tether segment.

3. Acceleration levels The acceleration measured by an accelerometer package located at the centre of
mass of the elevator is the sum of the external, excluding the gravitational, and
internal forces (e.g. tensions) acting upon the platform divided by its mass.

By solving the differential equations, we compute the acceleration of the centre of
mass with respect to the inertial reference frame.

The acceleration of a point off the centre of mass with respect to the inertial
reference frame, is computed by using the relative-motion equation for a rigid body,

R = RCM + wXp+wX{wxp) (7

4. Numerical results Table | shows the system configuration and Table 2 the thermal and mechanical
characteristics of the Kevlar tether adopted. In order to compare the present
simulation model with the model described in References | and 7, the tether mass has
been neglected. Consequently, the longitudinal tether vibrations are not modelled in
these particular simulation runs.

The duration of the simulation run is 1.5 orbits, which includes three crossings of
the terminator. The simulation starts with the system at the ascending node. on the
X-axis of the inertial reference frame, at an altitude of 450 km and an inclination of
28.5°. The system is aligned along the local vertical and the Sun is at the vernal
equinox. The initial tether temperature is 290 K. All environmental perturbations are
acting upon the system. Only the longitudinal dampers are activated during the
simulation, because the in-plane and out-of-plane libration dampers make no signifi-
cant contribution to the acceleration during steady-state phases'.

The elevator, approximated by a right circular cylinder, has principal moments of
inertia /,=/,=8619.8 kg m°, /;=3906.3 kg m? about the longitudinal, transverse
and vertical axes, respectively. We assume zero initial attitude angles in order to study
the steady-state attitude dynamics.

The analysis is further simplified by positioning the attachment points on the
vertical axis of the cylinder which, together with the previous assumptions. gives
w3y =constant.

Figures 4 — 6 show the elevator attitude angles: the low-frequency oscillations are
due to in-plane and out-of-plane natural oscillations, temperature, and gravitational-

Table 1. Discretisation of the system Table 2. Kevlar tether characteristics
Symbols Steady-state Platform Tether Platform cross- Tether cross- Radius 1x107"
in Fig. | tether length mass mass sectional area sectional area Linear density 4.85x107° kg m -
(m) (kg) (kg) (m% (m%) Solar radiation

absorptivity 0.75
m, 10 000 218 10 9.0 Thermal emussivity 0.5
i 5 8998 Specific heat 2500 T kg ' K
m, 5000 24.2 10 10.0 Young's modulus 1.96x10'" N m™?
iy WFAD 998 Thermal expansion
moe - 306 752 27.9 2790 1S coeffictent 2210 " K
I, 10 500 Damping coefficient 0.10
m, 10 000 258 10 10.5 Drag coefficient 2

108 ESA Journal 1990, Val 14



force variations. The effects of damped longitudinal oscillations are negligible and,
in addition, the plot scale does not reflect the natural frequency of the pitch and roll.

The acceleration and its spectrum for the elevator centre of mass and for a test point
P are plotted in Figures 7 and 8 and Figures 9 and 10, respectively. Note that the DC
component is omitted in the spectra shown in this paper.

The acceleration levels are mainly due to the contributions at low frequencies and
at the pitch natural frequency (6.7 X 107% Hz). which provides an acceleration of
about 1077 g.

The elevator dynamics do not appreciably influence the acceleration level of the
Space Station centre of mass, as shown in Figures 11 and 12.
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Figure 13. Test point Q(0.0,2) longitudinal and
vertical acceleration component spectrum

5. Simplified attitude
model

ONGINAL PACE 18
OF POOR QUALITY
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A second simulation was run in order to invesiigate the effect of an initial pitch
angle of 102 rad upon the 1 and 3 acceleration components at a test point Q. Only
two harmonic components, at the pitch natural frequency and twice the pitch natural
frequency, were present in the axis-3 component (Fig. 13).

A simplified analysis of the autitude oscillations is given below to validate the
numerical results.
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With reference to Figure 3. the equations that describe the attitude dynamics of the

elevator orbiting the Earth at constant rate w. under the assumption of small angles,
9
are”:

Roll B + (qu” + b8 = (1-gluy
Yaw v = —y8 (8)
Pitch a+ba =0
where
g = 1~1/],

o
|

d
- (Fe.d.u + Fe.d‘/) N
4

Note that the yaw dynamics are coupled to the roll dynamics. The influence of the
yaw upon the roll, however, is attenuated by the factor (1 —g). Furthermore. the roll
motion has a frequency very close to that of the pitch motion, which is equal to
Vb2, A

Let us consider. for instance. the effects on the acceleration levels due to a small
pitch perturbation «. Since the pitch motion is decoupied. as shown in Equation (8).
from the yaw and roll motions. we can write the in-plane components of the
acceleration at a point (p,,0,p4) on the elevator as:

R, = Repy, — aRey . + prac + p, [wa—w)—a?]

9)

R} = akm,._l + RCM,: - p,d + p;[w(zoz—u:)—oz"]

where Ry, . and Ry . are the acceleration components at the elevator’s centre of
mass along the flight direction () and the local vertical (z). respecuvely. For an

ESA Journal 1990. Vol. 14



unperturbed system aligned along the local vertical, Rcy, = 0 and Ry, . coincides
with the gravity-gradient acceleration.

Let us assume that the system is stationary and that only the pitch angle « is
- oscillating with an amplitude of 0.57° (10 ~? rad) at its natural frequency Vb/2x. If
the test point is located on the yaw axis 2 m from the elevator’s centre of mass, from
Equations (9) the maximum acceleration components are about 3.6 10 ™% g along
axis-1. and 3.8X107* g along axis-3. The former is primarily related to the
tangential acceleration pia. and the latter to the gravity gradient. Moreover,
Equations (9) provide other useful information about the acceleration. Specifically,
while the gravity gradient and tangential terms have a natural frequency of Vb/2x,
the centrifugal term (within square brackets) has two harmonic components at vb/27
(i.e. 2wa-term) and at v b/ (i.e. o’-term), respectively. It should also be noted that.
for small angles. the gravity-gradient term oscillates at the frequency Vbi2z along
axis-1 and is constant along axis-3.

The numerical model presented in this paper has proved to be a valuable tool for
analysis of the attitude dynamics of a space elevator. The overall system dynamics
agree with the results of Reference 1, where a model without the elevator's rotational
motion is used.

This paper has shown that the acceleration onboard the elevator is affected by its
rotational motion. The rotation-related dynamic noise grows as the distance between
the microgravity experiment and the elevator's centre of mass increases. For the
particular elevator geometry and inertia adopted in this paper. the two harmonic
components of the acceleration have frequencies of 6.7x107> Hz and 1.4x10""
Hz. which are low enough to affect some microgravity processes.

However. a simulation run with equilibrium initial conditions and environmental
perturbations demonstrated that the amplitude of the attitude motion (and hence the
related acceleration) is negligible. Consequently, the effect of the attitude dynamics
on the acceleration levels is significant only during transient phases.

Further analysis is required with regard to: (i) damping and control of the elevator's
attitude motion; (ii) coupling between the elevator's attitude and the tether's
vibrations: and. to a lesser extent. (iii) effects of additional disturbances. such as aero-
dynamic torques. which may be significantt for an asymmetric elevator’s geometry.
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4.0 TETHERED SPACE CENTRIFUGE

Tethers with a length of a few kilometer could be used to build a space centrifuge with
a very large diameter and a very small rotational rate. Rotational rates higher than 6 rpm
produce canal sickness in humans while "apparent” gravity level smaller than 0.3 g are
undesirable because they impair motion. The two values above imply a centrifuge with a
diameter of at least 16 m. Moreover, if an optimal environment is desired for human
habitation, the centrifuge should rotate at a rate smaller than 2 rpm and provide a gravity
level of 1 g. These values require a centrifuge with a diameter of at least 420 m. A 1-km
tether, connecting two space vehicles and spinning about an axis perpendicular to the tether
could be an ideal space centrifuge with an optimum environment (the so called optimum

comfort zone) for human habitation.

A tethered centrifuge is proposed for a demonstration flight in LEO in the following
paper. A 1-km tether connects a Delta second stage and a General Electric reentry capsule

to provide a 1-g gravity level at the capsule with a rotation rate of about 1 rpm.

The paper addresses the issues of: desirable gravity environments for human
habitability; quality of the acceleration levels on board the capsule during steady rotation;
spinning and despinning of the centrifuge; and stability of the tether oscillations during the

steady rotation phase.

See also Quarterly Report No. 16 of this contract for more details.







The Journal of the Astronautical Sciences, Vol. 40. No. 1, January-March 1992, pp. 3-25

Dynamics and Stability of a
Tethered Centrifuge in Low
Earth Orbit

B. M. Quadrelli' and E. C. Lorenzini?

Abstract

The three dimensional attitude dynamics of a spaceborne tethered centrifuge for artifi-
cial gravity experiments in low Earth orbit is analyzed using two different methods. First,
the tethered centrifuge is modelled as a dumbbel! with a straight viscoelastic tether, point
tip-masses, and sophisticated environmental models such as non-spherical gravity, ther-
mal perturbations. and a dynamic atmospheric model. The motion of the centrifuge dur-
ing spin-up, de-spin. and steady-rotation is then simulated. Second. a continuum model of
the tether is developed for analyzing the stability of lateral tether oscillations. Results in-
dicate that the maximum fluctuation about the 1-g radial acceleration level is less than
107* g; the time required for spin-up and de-spin is less than one orbit; and lateral oscilla-
tions are stable for any practical values of the system parameters.

L. Introduction

The planned Space Station and Manned Mission to Mars will require astro-
nauts to endure long periods under weightless conditions detrimental to human
physiology. Recent achievements in human endurance to zero gravity non-
withstanding, an artificial gravity environment may be far preferable for
long missions.

The motivation behind this paper is to prove that a tethered centrifuge is ca-
pable of providing the desired level of artificial gravity at low rotational speeds.
The advantages of a long tethered centrifuge with respect to a much shorter
rotating spacecraft are optimum artificial gravity environment; reduced side
Coriolis accelerations, which are unpleasant for human habitability; and simplic-
ity in reconfiguring the centrifuge by reeling the tether in and out. In summary,
a tether centrifuge can provide any desired value of fractional-g or a 1-g level by
rotating at a much lower rate than a conventional centrifuge.

'Visiting Scientist. Radio and Geoastronomy Division, Harvard-Smithsonian Center for Astro-
physics. Cambridge. MA 02138.
“Statf Scientist. Radio and Geoastronomy Division. Harvard-Smithsonian Center for Astro-
physics. Cambridge. MA 02138.
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4 Quadrelli and Lorenzini

The tethered centrifuge analyzed in this paper is not intended for human hab-
itability, but for carrying out experiments on relatively small samples at various
artificial gravity levels in low Earth orbit (LEO), with an emphasis on the l-g
level. The system considered is formed by a 200-kg General Electric (GE) reentry
capsule at one end and a Delta II second stage, with an empty mass of 872 kg, at
the other end. (See Fig. 1.) The tether length is 1 km as proposed by the Ad-
vanced Project Office of the Marshall Space Flight Center [1,2].

The feasibility of a tethered centrifuge in space has been demonstrated in (1]
and [2]. The dynamics during spin-up and de-spin of a tethered centrifuge have
been analyzed in [3] for a tether length of 1 km and heavy end masses. In [3],
however, the effects of the environment upon the artificial gravity levels were
not analyzed.

The three dimensional attitude dynamics of a tethered centrifuge in LEO is
investigated in this paper using two different dynamics models.

First, the tethered centrifuge is modelled as a dumbbell system with a straight
viscoelastic tether, point tip-masses, and sophisticated environmental models
such as non-spherical gravity, thermal perturbations, and a dynamic atmospheric
model. These environmental models are currently used for other dynamics stud-
ies of tethered systems [4]. Particular attention is given to the acceleration fluc-
tuations on board the capsule at the tether tip during spin-up, de-spin, and
steady-rotation phases.

Second, a continuum model of the tether is developed for analyzing the stabil-
ity of lateral oscillations during the steady-rotation phase as a function of the Sys-
tem parameters. This model has also been used for computing the system's
natural frequencies, both analytically and numerically.

I1. Lumped-Mass Model
Equations of Motion

The motion of the system is described with respect to a local vertical local
horizontal (LV-LH) orbiting reference frame xyz, which rotates with orbital mean
motion ) and geocentric radius R,. The origin of this frame coincides with the
initial position of the center of mass of the system and the coordinate axes are z
along the local vertical, x toward the flight direction, and y in the out-of-plane

T

TETHER %]D
' 9
~N

DELTA SECOND STAGE GE CAPSULE
2000 POUNDS 500 POUNDS

FIG. 1. Artificial Gravity Experiment Configuration.
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Dynamics and Stability of a Tethered Centrifuge in Low Earth Orbit H

direction (Fig. 2). The geocentric inertial reference frame XY, Z,, also depicted
in Fig. 2, is as follows: X, points toward the vernal equinox, Z, toward the North
Pole, and Y, completes the right-handed reference frame.

The system is modelled with N point masses m; connected by massless springs
and viscous dash-pots. g, is the radius vector of mass /m, with respect to the or-
bital reference frame and fe, fa, £, are the gravitational, drag, and tensional
forces on each mass per unit mass. The equation of motion of the generic ith

mass is as follows [4]:
PHR+20X A+ QX @xp)=f, + 0 +1, (1)
Substitution of p, = x,i + y;j + z.k into equations (1) yields:
X =202, - 0% = for + fau + fir
).;i = fw + fdly + fﬂy
5+ 20x - Q%2 = R) = foo + fuu + fon. ()

If € =¢(cos ¢ sin 6i + sin ®j + cos ¢ cos 6k) is the vector from m, to my
(Fig. 2), then

8 = tan-!|XLT_ X~
2 = Zn

e ¢

are the in-plane and the out-of-plane angles with respect to LV.
Following the assumptions of [5], the kevlar tether is assumed to be perfectly
elastic without any bending stiffness. Since, as shown later on, the spring-mass

sin"[——y L y”] 3)

FIG. 2. Schematic of Tethered Centrifuge and Reference Frames.
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frequency is too low for the material damping to be effective, a longitudinal
damper is added at one of the tether attachment points. From [5] a damper effec-
tive in damping the spring-mass mode of the system is tuned to the frequency of
that mode and has a damping ratio ¢ = 0.9. Consequently, the damper stiff-
ness k, is equal to the tether stiffness per unit length k = EA4/¢, where EA is
the tether axial stiffness. Neglecting the tether mass, the damper’s damping
coefficient is b = £VkM,,, where My = (my x my)/(m, + my) is the equiva-
lent mass.

The geometry of the tether with the longitudinal damper is depicted in Fig. 3,
where ¢ = ¢, + €, + ¢, + ¢, and

€ = Cam, thermal stretch; (4)
€ =€ = Tk, elastic and damper stretches. (5)

Here ¢, is the tether natural length, a is the tether thermal expansion coeffi-
cient, T the average tether tension, and 7 the tether temperature.

In order to account for the motion of the damper, assumed massless, the fol-
lowing equation,

ke = kabs + bi,, (6)

is added to equations (2). Furthermore, the components of the tensional forces
per unit mass in equations (2) are given by:

ﬁl.l = (7.1( - n.,-l)/m:§ (71)
7;,1 = TI(XH'I - x,)/€,; (7-2)
T = E—At’,,.; (7.3)
¢
m,
®
£,
2

Lk

m

1
FIG. 3. Schematic of Tether and Damping Element.
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where €,, and T, are the elastic stretch and the tension of the ith tether segment.
Similar expressions for £, , and for f.., are obtained by replacing x, with ¥, and z,,
respectively, in equations (7).

Environmental Models

The system is acted upon by atmospheric, gravitational, and thermal perturba-
tions. An exhaustive description of accurate environmental models normally
used for simulating the dynamics of tethered systems is given in [6].

The gravity model adopted for this study has the J, and J: zonal components of
the field. The latter term produces a secular effect on the osculating elements of
the orbit, such as mean anomaly, argument of perigee, and right ascension of the
ascending node. The J.-term also produces a small libration of a long tethered
system such as the one under consideration. The gravity acceleration on the ith
mass is given by [7]:

£, = [Q){—grad(U/: + U})}7 8)

where [Q] is the transformation matrix between the geocentric inertial frame
and the orbiting reference frame, and U”, U/ are the potential energy compo-
nents of the Earth’s gravity field associated with the J, and J, terms. Specifically,

o= oK.
U; R’
U = %(%)‘#(3 sin®A, — 1); ®

where u and Rg are the gravitational constant and the equatorial radius of the
Earth, A, the geocentric latitude, and R, the geocentric radius vector of the
ith mass.

With regards to the thermal model, it is assumed that the tether receives ther-
mal energy directly from the Sun, from the Earth’s albedo, and from the Earth’s
infrared radiation. Cooling is provided by emitted radiation only. Furthermore,
the reflectance of the Earth is taken to be isotropic and diffuse. and the spectral
distribution of the reflected radiation is considered equivalent to the spectral
distribution of the incident radiation. Aerodynamic heating is neglected. The
tether equilibrium temperature is computed by equating the net thermal flux to
the time derivative of the tether thermal energy. The thermal balance equation
is taken from [4] and it is not shown here for the sake of brevity.

The atmospheric density model is an analytical function of the exospheric
temperature and the local altitude (8], which fits Jacchias 1977 model. The
agreement with Jacchia's 1977 model for the same exospheric temperature is
within =10%. This atmospheric model takes into account dynamical thermo-
spheric corrections, such as the diurnal variation (function of solar activity) and
minor fluctuations like the seasonal-latitudinal variations of the density above
150 km. The atmospheric density profile covers altitudes from the ground up to
1000 km.
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The deceleration of the ith-lJump due to the atmospheric drag is

1
fd.l = ‘ECdA:')‘.V:Vn (10)

where A, is the frontal area of ith mass; C, is the drag coefficient (=2.2); v, is the
atmospheric density at height 4,; and v, is the wind velocity vector.

It is assumed that the atmosphere rotates rigidly with the Earth. Equa-
tions (7), (8), and (10) are then substituted into equations (2).

II1. Apparent Accelerations

For a system on a circular, unperturbed orbit of radius R, and orbital rate Q,
calling e, (radial), e, (lateral), e, (tangential) the unit vectors of a body reference
frame (tether frame) rigidly attached to the tether, the inertial radius of the GE
capsule is

R = [R, cos 6 cos ¢ + ple, — [R, sin 8)e, — [R, cos @ sin ele.,

where p is the radius vector of the capsule (the subscript i = 1 has been dropped
in the equation above). The acceleration on board the capsule is

R=R,+[p-(Q+08Yp cos’e — p¢le,
+ [(Bo + 260 + 2p8) cos ¢ — 2pe(6 + Q) sin gles
+ [p(Q + 6) sin ¢ cos ¢ + pi + 2pée, . 11

Neglecting the drag deceleration, the apparent acceleration 3 at the capsule is
as follows:

a=f -R. (12)
Assuming a spherical gravity field, the gravity acceleration is
aU’ﬂ'2 1 aU’°e 1 aU"
p  pcose 90 oy

=10~ [ (13)
where f, is the gravity acceleration at R,.

Consequently, the radial, lateral, and tangential acceleration components are
as follows:

€
p dp

a, = -p+ pé + (Q + 6 coslp — Q% + 30% cos’d cos?p  (14.1)
a; = -6p cos ¢ — 2p(é + Q) cos ¢ + 2p¢'>(é + ) sin ¢
- 307 cos ¢ sin 8 cos 6 (14.2)

d. = —pé — 2p¢ — p(6 + ) sin ¢ cos ¢ — 30% cos’6 sin ¢ cos . (14.3)

An accurate estimate of the average steady-spin velocity which provides a 1-g
acceleration at the capsule is easily obtained from equation (14.1) after noting
that p = § = 0 because for a steady-rotation rate much greater than (} the fiuc-
tuation of the tether stretch, owing to the gravity gradient, is negligible with re-
spect to the centrifugal component of the stretch. Moreover, for a centrifuge
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with the spin plane initially parallel to the orbital plane and neglecting second
order effects due to the J,-term, ¢ = ¢ = 0, and equation (14.1) yields

a, = p(6 + Q) - pQ? + 30% cosb. (15)

During the steady-spin phase, the largest contribution to the acceleration is
provided by the first term, namely the centrifugal component, while the contri-
bution of the gravitational gradient is negligible. The average inertial spin veloc-
ity for a 1-g radial acceleration at the GE capsule of a 1-km long centrifuge is
1.05 rpm. The average tether tension is 1960 N.

IV. Simplified Analysis of the Motion of Fast Spinning Systems

The well known linearized equations of motion for a dumbbell system of
tether length ¢ are:

é+¥(é+ﬂ)—2¢(é+Q)tan¢p+3ﬂzsin0cos(9=Q,

¢+ %ﬁq'a + sin ¢ cos ¢[(6 + Q) + 30Q% cos’6] = Q,, (16)
with the assumptions of massless tether, point tip-masses, and circular orbit. O,
and Q, are the in-plane and out-of-plane generalized torque, respectively.
For a constant tether stretch and wyw > Q, where wv = w + Q is the inertial
average spin rate and w is the average value of 8, and for small out-of-plane
angles, equations (16) yield:

6 + 30%sin 8 cos 6 = Q, (7.1
¢ + who = 0,. (17.2)

Equation (17.2) shows that the out-of-plane motion for spin velocities much
greater than the orbital rate has a resonant angular frequency equal to wy.

V. Control Laws for Spin-Up and De-Spin Maneuvers

The space centrifuge is spun up and down by using two thrusters on the tip-
masses with equal thrust levels, firing perpendicularly to the spin axis. At the
start of the spin-up maneuver, the centrifuge is assumed to be fully deployed and
aligned with the.local vertical.

The control laws are derived for a system spinning in free-space. They are
later implemented into the numerical model described in Section II for simulat-
ing the response under more general conditions.

The thrust force F, during spin-up, is commanded according to a proportional-
derivative law as follows:

k, k, -
= —=g - -2 18
F ? 0 - wsl) 7 e, (18)
where w,, is the steady-spin velocity.

For any value of k; and of the damping ratio £ (which is assumed equal to
0.9), k» = 26VM,, Vk, € [9]. In order to reach the steady-rotation in about
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2000 seconds (one third of the orbital period) with a maximum thrust of about
20 N,k = 1670 Nm/rad and k, = 9.457 x 10° Nms/rad.
The control law for the de-spin maneuver is

F=-—-¢g-224 (19)

The thrust F has its maximum value at the initial time because the value of
the angular velocity 8 is different from zero.

The total propellant consumption G is obtained by integrating the total instan-
taneous thrust F over the maneuver duration At as follows:

L“[I-‘l dt

¢ lyg 20
where I, is the specific impulse. A strategy for reducing the total propellant con-
sumption during the spin-up phase is suggested in [3]: the tether is deployed be-
yond its final length. the centrifuge spun up to the steady-state value of the
angular momentum, and the tether is then reeled in to its final length. Since the
total impulse varies inversely with the tether length, the strategy of [3] reduces
the propellant consumption with respect to a spin-up maneuver at constant
tether length. The conventional technique, however, is followed in this paper
because the proposed centrifuge makes use of the Small Expendable-Tether
Deplovment System (SEDS) [10] for deploying the tether to its final length but
the SEDS deployer can not retrieve the tether once it is deployed.

V1. Motion Of The Tether Treated As A Continuum
Equations of Motion

Restricting the motion of the tether to the orbital plane, the equation of mo-
tion for the in-plane transverse vibration of an element of tether of mass dm at a
distance R from the center of the Earth is (Fig. 4):

Rdm =F, + F,, (21)

where F, is the tensional force, F, the gravitational force, and other external per-
turbation forces have-been neglected. Moreover, since the system is stiffened by
the centrifugal force, the tether deflections are small.

The tether is assumed to be a uniform string of constant length ¢, with no
bending stiffness, clamped at its ends to the point masses i, and m,. These geo-
metric boundary conditions imply that m, and m, always lie on the x axis of the
tether reference frame.

The analysis is also restricted to the steady-rotation phase. The material
damping is neglected since it is reasonable to assume that the damping has a sig-
nificant influence only when transverse deflections are large. The radius vector
to the generic tether element is

R = (x — R, cos 8)i + (y + R, sin 6)], (22)



Dynamics and Stability of a Tethered Centrifuge in Low Earth Orbit 1"

FIG. 4. Reference Frame for the Continuous Model.

and the acceleration
R = ¥ - 6y - 200 + Q)y - x(@ + QF + R,Q? cos oli
+[§ + 6x + 206 + Q)E — y@ + Q) — RO sin 6]j. (23)

Since F; = —u(R/|R|’)dm, using a binomial expansion and neglecting second
order terms,

F, = - Q%dm{{x(1 — 3 cos’8) + 3y sin 6 cos 8 — R, cos bJi
+ [y(1 — 3 sin?@) + 3x sin @ cos 8 + R, sin 6]j}. (24)
The tensional force F, is given by [11]:
aT o'y aT oy
= — 1+ — + —=1j .
F [(ax)l (Tax‘ ox ax)‘l]dx 23)

Defining ¢ = dm/dx as the mass per unit length of the tether, the equations
of motion are

3 . = 3 " 1 oT

¥ - x(0° + 26Q + 302 cos*8) - y(0 - =0%sin 20) -9+ Q) = ——

2 o ox
(26.1)

¥ — y(6° + 26Q + 3Q7 sin%0) + x(é + %02 sin 29) + 256 + Q) =
2y,
l[TL‘w + a—Tfa'—V]. (26.2)
o ax- ox dx

The assumption of small transverse deflections makes the analysis tractable.
as the tension becomes a function of the variable x only and the Coriolis term
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[—2)3((; + )] is negligible. Defining s = x + €1, where ¢, is the distance be-
tween the system’s center of mass and one of the two tip-masses, the tension
along the tether is as follows:

(27)

T(s) = (6 + 26Q + 302 cosz())[(e‘ ; 5) + M"’f].

o

Substituting equation (27) into equation (26.1), assuming that the system is
following its rigid body oscillation forced by the gravity gradient (i.e.
6 + (3/2)Q" sin 26 = 0) and defining the variable z = s/¢ and the parameter
A =1+ 2M,/o¢. equations (26) yield:

. . 2 y ’
¥ (8° + 260 + 302 COSZO)[(A - 22)% - Zzﬂ}

-1
2
+ (67 + 260 + 307 sin%)y, (28)

with the boundary conditions y(0) = y(1) = 0.

Stability Analysis

Separating the variables in equation (28), after substitution of

y(z,1) = 3 F.(0)G.(2), (29)

n=|
equation (28) yields:

Fo 4+ [(BI = 1)(6* + 26Q) + 307 cos?0(B? + 1) — 30°F, =0, (300

and
3 dZGn dGn 2

- I)— - nlU, = U, 0.2

(4= )72 - 2: 72 4 282G, = 0 (30.2)

with G(0) = G(" =0, and B, the natural frequency of the nth mode.
By replacing # with its average value w and defining r = wt, equation (30.1)
simplifies as fol!. ws:

F, + [8 + 2e cos(27)]F, = 0. )
Equation (31) is Mz.nhieu equation with the parameters given by:
2 —
é= (—B"—,—l)[wz + 20} + 192]
w” 2
e=>Lpe. (32
4 w°

Eliminating w. equations (32) yield:

(B - 1) . 1 o
BI+ 1 BB+

5=(Bi-1)+2 (33)
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The superposition of this curve onto the Strutt’s diagram [12] enables the com-
putation of the boundary values of the parameters 6 and e for stable oscillations.
Notice that the shape of this curve depends on the value of the nth eigenfre-
quency B,, and it is therefore necessary to solve the spatial problem first.

Under the simplifying assumption that the tension is constant along the tether
and equal to its average value over one spin period, the time dependent equation
of motion yields:

F. + [B} - 0* - 200 - 307 sin*6)F, = 0, (34.1)
and the spatial equation

d'G, o
T+ “Tgicn =0. (34.2)

Equation (34.2) represents the motion of a string under constant tension with
natural frequencies

T
B =2 /L (35)

¢ g

This enables the following formulation of Mathieu equation:

F, +[8, + 2¢, cos(27)]F, = 0, (36)
with the new parameters
T n’r? QF
2T ee s 2w !
3 2
€ = — 9— (37)
4 w°

The oscillation is unstable for small values of € if 6 = m’/4 where m is
an integer.

For a l-km-long centrifuge with 1-g artificial acceleration at the capsule
w =950, 6, = 483.1n° — 1, and ¢, = 8.31 x 107%.

From equation (33) a general expression for spinning tethered systems can be
derived. Substituting the expression of B,, equation (33) yields:

_(FPo'r' = 1) + 2(re*m? = De; + Blrwim® + 1)]7€)?
B (rom? + 1)

S , (38)

where r = M,, /o€ is the equivalent mass to the tether mass ratio.

Figure 5 shows §, from equation (38) for small values of €,, n = 1 (first mode
of lateral vibration), and three different values of w. For any practical values of
the system parameters and a tether length of 1 km, the lateral tether oscillations
are well within the stability boundaries. The faster the system spins and the
lighter the tether with respect to the end masses, the more stable the oscillations
are. These results are confirmed in [11] and [14].
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FIG. 5. Approximate Location of Boundaries between Stable and Unstable Solutions of
Mathieu’s Equation. valid for small € (from Ref. [13]) and Parametric Representation of the
Characteristics Lines of the Space Centrifuge.

Eigenfrequencies

The natural frequencies can also be computed by modelling the system with
N lumps. Table 1 shows the natural frequencies, computed by means of an IMSL

TABLE 1. Natural Frequencies (H2) of the Tethered Centrifuge (Inertial Spin Rate = 1.05 rpm)

Mode |2-D Lumped 2-D 2-D Lumped Mode Type
Number free ends Continuum fixred ends

10 lumps fixed ends 8 int. lumps
1 2.54 10-3
2 8.32 10-2 spring-mass
3 0.379 0.3803 0.379 1st transverse
4 0.747 0.7607 0.746 2nd transverse
5 1.092 1.141 1.090 3rd transverse
6 1.404 i 1.521] 1.402 4th transverse
7 1.673 1.844 1.671 5th transverse
8 1.845 1.901 1.837 1st longitudinal
9 1.892 2.282 1.889 6th transverse
10 2.053 2.662 2.049 7th transverse
11 2.152 3.042 2.148 8th transverse
12 3.630 3.689 3.618 2nd longtudinal
13 5.305 5.5ﬁ3f3 5.289 3rd longitudinal
14 6.819 7.378 6.799 4th longitudinal
15 8.126 9.223 8.103 5th longitudinal
16 9.187 10.067 9.160 6th longitudinal
17 9.968 12.912 9,939 7th longitudinal
18 10.447 14.757 10.417 8th longitudinal
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numerical routine, of a 1-km-long system modelled with 10 lumps. Also in
Table 1 are the values of the natural frequencies for a fixed-ends continuous
string with constant tension and for an evenly spaced lumpy string with equal
lumps and fixed ends, which are given by [15]:

I 1 [EA4 . nw
f-(longitudinal) = Vi sm{z(N " 1)}

1 T . ni
f.(transverse) = p \/W Sm[?.(Tf-—l)J' (39)

In equations (39), n is the mode number, N the number of tether lumps. m the
mass of the lump, and ¢ the distance between two successive lumps. Since ac-
cording to [14], a 4 lumped-mass system provides the lowest natural frequencies
with an accuracy of 4% with respect to the continuous model, the 10-lump model
adopted for the centrifuge is more than adequate for computing the low order
natural frequencies.

VII. Numerical Results

Numerical results are based on the parameters shown in Table 2. The dynam-
ics simulations have been carried out by using a standard variable step. fourth
order Runge-Kutta routine for integrating equations (2). The system is modelled
with two lumps only (i.e. the tip-masses) connected by a viscoelastic tether. Be-
cause of the high tether tension and the relatively stiff tether, the simulation is
very CPU intensive, even with 2 lumps. The addition of more lumps along the
tether makes the CPU time prohibitively high and, to a certain extent, unneces-
sary because thanks to the high tension the tether shape is very close to a
straight line.

Steady-Rotation Phase

The centrifuge has its spin axis initially perpendicular to the orbital plane and
spins freely, with an initial inertial spin velocity of 1.05 rpm that provides a 1-g
gravity level at the GE capsule. The components of the apparent acceleration on
board the GE capsule are shown in Figs. 6(a-c). The tangential component is
along the tangential velocity, the radial component is along the straight tether,
and the lateral component is perpendicular to the spin plane. The lateral and
tangential components of the acceleration are negligible. The radial component
shows fluctuations smaller than 0.8 mg about the desired value of 1 g. The low-
and high-frequency fluctuations are related to tether temperature variations,
J; effects, and gravity gradient. Because of the low spin rate, an object on board
the capsule moving at 3 fps (i.e. the speed of a walking person) in a direction
perpendicular to the spin axis is subjected to a side Coriolis acceleration of
only 0.02 g.

The centrifugal gradient is 107° g/m at the steady-rotation rate of 1.05 rpm,
which is smaller than the maximum value of the optimal rotational velocity of
2 rpm [16]. As shown in Fig. 7, the tethered centrifuge is long enough to provide
a dynamic environment well within the “optimum human comfort zone." The
optimum comfort zone is the region of gravity level versus rotational speed that
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TABLE 2. Orbital and Design Parameters of the Tethered Centrifuge

Orbital Parameters

Altitude 350 km
Inclination 28.5 deg _
Reference Exospheric 900 °K
Temperatature

Initial Eccentricity 0

Sun Position Summer Solstice
Design Parameters

Tether Length 1 km
Tether Diameter 1.7 mm
Tether Thermal Expansion [-2.5x10-6 °K-1
Coeflicient

Keviar Yield Strength 2500 MPa
Tether Linear Density 3.47 kg/km
Capsule Mass (m;) 203.7 kg
Delta Il Stage Mass (my) 872.7 kg
Inertial Spin Velocity for 1-g|1.05 rpm
Acceleration at Capsule

Longitudinal Wave Speed 3689 m/s
Transverse Wave Speed 752 m/s
(Tension = 1960 N}

Tether Adal Stiffness (EA) |47311 N

ground-based tests have demonstrated to be best suited for human physiology
[16]. Rotational velocities above 6 rpm produce canal sickness, while gravity lev-
els below 0.3 g impair mobility. Centrifuges with a radius smaller than 8 m are
unable to provide an environment suitable for human habitation.

Figure 6(d) depicts the inertial spin velocity. The average spin velocity relative
to the rotating frame of 8 = 95Q is very far from the value 8 = 1.87Q at which
the out-of-plane motion becomes unstable [17]. The low-frequency variation
of the spin rate 8 is related to the thermal stretch of the tether. The effect of
the terminator’s crossings at ¢ = 3000 sec and r = 5200 sec is readily seen in
Fig. 6(a). A decrease in tether temperature [Fig. 6(¢)] produces an increase in
tether length and a small decrease in rotational speed. Conversely, a temperature
increase produces a small increase of rotational speed.

An interesting result of the centrifuge with its spin axis initially perpendicular
to the orbital plane is as follows: the relative angular momentum vector H (i.e.
about the centrifuge’s CM) precesses in inertial space. The J, gravity torque,
which affects both the orbital and the relative angular momenta, is responsible
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FIGS. 6(a)-(f). Dynamic Response during the Steady-Spin Phase of a Centrifuge with the Spin
Axis initially Perpendicular to the Orbital Plane.

for this phenomenon. As a result, the nutation angle of H with respect 10 its ini-
tial orientation increases slowly during the simulation time span as shown in
Fig. 6(f). This slow drift of about 5 millideg per orbit is responsible for the slow
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increase of the lateral acceleration component shown in Fig. 6(c). The accelera-
tion level. however, is negligible even after a large number of orbits. A simula-
ral acceleration up to a

tion of 20 orbits has shown a linear increase of the late

level of 30 nanog after 20 orbits.

Conversely, for a centrifuge with the spin axis initially aligned with the orbital
velocity vector. the vector H precesses but the maximum amplitude of the nuta-
tion angle does not increase with time as shown in Fig. 8(a). Consequently, the
amplitude of the lateral acceleration component, shown in Fig. 8(d), is constant.
Its magnitude, however, is bigger (but still negligible) than in the previous case
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[compare to Fig. 6(c)] because the lateral acceleration is periodically affected by
air drag when the spin axis is initially aligned with the flight direction. Every
quarter of an orbit the centrifuge orientation changes from edge-on to head-on
with respect to the ram direction. The nonsymmetric behavior of the lateral ac-
celeration is related to the diurnal bulge of the atmosphere whereby the air

Artiticial Gravity (g)

1.0
\J]
4 Th\J210 m 65 m 25 m
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FIG. 7. Antificial Gravity Envelope (Adapted from Ref. [16]). “TC" is the Curve for a

1-km-long Tethered Centrifuge.



20 Quadrelii and Lorenzini

| i ! !

0.5 ] Precession frequency = nutation frequency
E ] C
3 0.4: o
€ ] .
@ 0.3 =
o B L
c - s
n© - b
S 0.2 =
= : o
) 4 -
z . L
0.1 [
p (a)[
0.9 T T T T
0.0 0.5 1.0 1.5 2.0

Orbits

FIGS. 8(a)-(d). Dynamic Response during the Steady-Spin Phase of a Centrifuge with Spin
Axis initially Aligned with the Orbial Velocity Vector.

density is greater on the sunny side of the orbit. The other components of the
acceleration shown in Figs. 8(b) and 8(c), are similar to the previous case. Spe-
cifically, the fluctuations of the radial component about the 1-g level are
smaller than 0.8 millig.

The analytical treatment of this precession phenomenon is quite complex and
beyond the scope of this paper.

Spin-Up Phase

The steady-rotation condition is reached in 2000 s as shown in Fig. 9(a). The
first rotation takes almost 150 seconds to complete. In the same period of time
the instantaneous thrust, shown in Fig. 9(b), grows from zero to 21.5 N. The
total propellant consumption is 70 kg for a cold gas system with a specific
impulse of 55 s, but only 13 kg if a bipropellant hydrazine propulsion is adopted.
Figure 9(c) shows that a 1-g level of radial apparent acceleration is readily at-
tained by the centrifuge.

De-Spin Phase

The system takes 2000 s to reach the quiescent condition [Fig. 10(a)]. The
thrusters have no control over the out-of-plane motion, as shown in Fig. 10(b).
The thrust level was limited to 40 N, as shown in Fig. 10(c), in this simulation.
Once the maneuver is over, the out-of-plane motion changes from a rotation
with a spin period of 57.74 s to a libration forced by the J>-term with an orbital
period of 5492 s. The tension in the tether changes from 1960 N (due almost en-
tirely to the centrifugal force) to 0.13 N due to the gravity gradient. Figure 10(d)
shows the radial apparent acceleration, which goes to zero following the varia-
tion of tether tension. Since the control law for de-spin is different from the

G-
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spin-up control law, the propellant consumption is now equal to 110 kg for a cold
gas system but only 20 kg for a bipropellant hydrazine propulsion system.

VIII. Conclusions

The major conclusions on the dynamics and stability of the 1-km space cen-
trifuge are as follows: (1) the analysis of the tether two-dimensional transverse
vibrations shows that these oscillations are stable for any practical values of the
System parameters; (2) the dynamic environment provided by the tethered cen-
trifuge is in the optimum comfort zone for humans subjected to artificial gravity
conditions and the acceleration fluctuations about the 1-g level are smaller than
0.8 mg; (3) because of the J, component of the gravity field, the relative angular
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momentum vector precesses and drifts very slowly for a centrifuge with the spin
axis initially perpendicular to the orbital plane, conversely the angular momen-
tum precesses without drifting for a centrifuge with the spin axis initially paral-
lel to the orbital plane; and (4) by adopting a proportional-derivative control law
for the thrusters, it is possible to spin-up and de-spin the centrifuge in less than
one orbit with a moderate propellant consumption.
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5.0 TWO-DIMENSIONAL STRUCTURES WITH TETHERS

While the gravity gradient provides positive tension along the vertical direction of
Earth-pointing long tethers in space, stabilizing forces in the horizontal direction can be
produced by either differential air drag or electrodynamic forces. An alternative to the
Earth oriented large structures is a centrifugally stabilized circular structure made of long
tethers which form the perimeter of the circle and the spokes. In either case, the final goal
is the stabilization of two-dimensional large structures in LEO which make use of long

tethers as structural elements.

The work carried out during this contract was the continuation of the investigation
conducted under contract NAS8-35497 from NASA/MSFC in which issues of stability of
two-dimensional tethered structures had been investigated. The results of that research are
best summarized in the following reference: E.C. Lorenzini, "Novel-Connected Two-
Dimensional Structures for Low Earth Orbits," The Journal of the Astronautical Sciences,
Vol. 36, No. 4, pp. 389-405, 1988.

Under the present contract, the research on two-dimensional structures focused on the

development of planar phased arrays with extremely high gains.

The following paper focuses on the design and system requirements for spaceborne
phased-array antennas for high power transmission of electromagnetic waves in the ULF
(<3 Hz) and VLF (3-30 kHz) frequency bands. The structures proposed in this paper are
not only Earth-oriented and stabilized by electrodynamic forces but also centrifugally-

stabilized with a spin axis perpendicular to the orbital plane.
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Abstract

A possible application of long conducting tethers in
Earth orbit and of spaceborne, two-dimensional tethered
structures is to radio communications in a frequency band
that extends upwards from about one Hertz to several
tens kilohertz. One-dimensional electrodynamic tethers of
the self-powered, drag-compensated variety have the
potential to function as effective transmitting antennas at
the lower end of this band {ULF frequencies), while two-
dimensional tethered structures could make it possible to
mechanize large-size VLF phased arrays of electric or
magnetic dipoles with a gain in excess of 30 dB.
Substantial R&D activity is still necessary (involving
Shuttle-borne, satellite-borne and rocket-borne experi-
ments) to prove the feasibility of these concepts and to
provide experimental data, lacking at this time, on which
to base the engineering design of these orbiting systems.

1. Single-dimensional tethers

A self-powered, drag-compensated, vertical electro-
dynamic tether, functioning as a “phantom loop” mag-
netic-dipole antenna (Grossi, 1987) with a moment in
excess of 101" A.m? and with a mass smaller than 10 tons
could transmit at ULF (~ 1 Hz) call-up messages and
low-data-rate communications to receiving terminals
deeply submerged in sea water. The technology of
spaceborne tethers, inclusive of the plasma contactors
necessary to bridge the tether’s terminations to the
ionosphere is well on hand at this time and will be
experimentally verified in the early ‘90s. Some of the
basic system parameters are given in Table I

Should the technology of room-temperature superconduc-
tivity advance to the point that we could make practical
use of it in spaceborne systems, there would be a
significant mass reduction. A tether system could be
configured with the design parameters given in Table II

A first experiment on the electromagnetic radiative
properties of a vertical electrodynamic tether will be
carried out on the occasion of the TSS-1 flight, scheduled
for early 1991. A ULF communications system of
practical significance, based on the results of this experi-
ment, could be operational a few years later, possibly by
1995.

2. Two-dimensional Tethered Structures

Even more impressive are the possibilities offered
by two-dimensional tethered structures, that could func-
tion as spaceborne reticles made of kevlar wires, capable
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+ ORBITAL HEIGET 300 1 1000 Km

» ORBITAL INCLINATION <80
s TETEER LENGTB 38 km
» TETHER CURRENT 10 A

» AVERAGE PRIMARY POWER 2187 KWATT

GENERATED BY TETHER

83 OHM (A WIRE OF ALUMINUM
AND KEVLAR THREADS;

« TETEER OBMIC RESISTANCE

e ORMIC LOSSES IN TETHER 3 Kwatt

» PLASMA CONTACTOR RESISTANCE 3¢ OHM (FOR TWO;

« IONOSPHERIC CIRCUTT RESISTANCE 2 OHM
s TETHER MASE 3 TONS
o CARRIER FREQUENCY 1 B

* MODULATION DPSK
+ RECEIVER BANDWIDTH 0.1 Hs

2 SOLAR PANELS. EACH
WITH a » 8m b = €5

o EXTERNAL SOURCE FOR SYSTEM
LOSSES OOMPENSATION (3% Kwati)
(WITH 228 Ky BATTERIES

IN PARALLEL)

o TOTAL MASS Of ORBITING SYSTEM 9 TONS
Table I. Spaceborne ULF Transmitter Using an Electro-
dynamic Tether Made of Non-Superconducting

Aluminum Wires

« ORBITAL HEIGHT 800 10 100C Az

« ORBITAL INCLINATION <6
« TETHER LENGTE 25 km
e TETHER CURRENT 10 A

 AVERAGE PRIMARY POWER 2187 KWATT

GENERATED BY TETHER

0 OFM (MATERIAL THAT If
SUPERCONDL CTING AT ROOM
TEMPERATURE,

« TETHER OHMIC RESISTANCE
+ OHMIC LOSSES IN TETHER 0 Kwait

+ PLASMA OONTACTOR RESISTANCE 20 OHM (FOR TWO

« IONOSPHERIC CIRCUIT RESISTANCL 2 OHM
e TETERER MASS (WITHE THERMAL SLEEVE) 2 TON:
e CARRIER FREQUENCY 1 H:

» MODULATION DPSK
o RECEIVER BANTMIDTH 0) Ha2

« EXTERNAL SOURCE FOR SYSTEM 2 SOLAR PANELS. EACH WITH
LOSSES COMPENSATION (4.4 Kwatt) s = 8m b 3 IWITH & kg
BATTERIES IN PARALLEL)

+» TOTAL MASS OF ORBITING SYSTEM & TONS

Table II. Spaceborne ULF Transmitter Using an Electro-
dynamic Tether Made of Room-Temperature
Superconducting Material

of supporting an array of dipoles of unprecedented
radiation intensity and gain. These large-size structures
(circles, ellipses, rectangles, squares, triangles, etc.) can be
magnetically stiffened in a plane perpendicular to the
geomagnetic field (Lorenzini, 1984) or centrifugally stiff-
ened. Figures 1, 2 and 3 provide examples of stiffening
by electrodynamic forces, while in Figure 4, a centrifu-
gally-stiffened configuration is depicted. The large-size,



magnetically-stiffened rectangular array of Figure 5, with
dimensions 50 km x 150 km, containing 1000 loops

(elementary magnetic dipoles) could provide in the ELF [—*‘WT-P
band (at about 75 Hz) a magnetic moment of 101 A.m?, (‘;? &,

with a total mass smaller than 50 tons.
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The VLF band, that extends from 3 KHz to 30

KHz, is where the advantages of tethered structures as TO PLANE OF :
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electromagnetic radiators in Earth orbit are most striking. 1’
At 9 KHz, the 30 km diameter, circular array of Figure 4, | Simerr | vonage Ty Ty P ’

rotating at 2.75 rph in a 750 km circular orbit, coplanar
with the orbit, could provide a 2° x 2° beamwidth and
radiate into the lonosphere a power level of almost one
Megawatt.

Case 2 |
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This beam, directed downward along the vertical, Figure 2. Example of pseudo-elliptical loop  also
and kept in that orientation by circular rotation of the e]ectrodynamically stabilized.
phase distribution among the array elements (while the
array rotates in its orbital motion) could use hundreds of
loops, as indicated in Table 111
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Figure 1. Example of rectangular structure stabilized

. . o N .-
by electrodynamic forces (tethers are all in N R Mass of overall orbiting system 50 1ons
aluminum and have the same diameter). = e — -

Radial Range covered & n?gametersio;‘
the earth surface from the vertical [of

The physical and electromagnetic properties of the e m waves ext point (al the botlom
cach loop are illustrated in Table IV. The directivity and of tonosphere)|
the gain that are achievable with the 20 x 20 array that
we have discussed thus far are illustrated in Table V, Figure 4. Spaceborne VLF transmitter and antenna for
Such an array would make it possible to achieve a Signal- communications at 9 KHz.
to-Noise ratio of 0 dB (threshold) in 1 Hz bandwidth, at a
distance of 5,000 km from the ionospheric “exit point” in The 30-km array (a flat ring with OD (outer

the worst conditions of propagation and noise level, as diameter) = 30 km and ID (inner diameter) = 10 km)
encountered is Summer daytime.  This result is of could be mechanized with 18 radial spokes and 10
substantial significance in strategic communications. loops /spoke, the total mass being about 100 tons. When
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50 x 20 150
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ARRAY
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O ORBITAL HEIGHT 500 Km
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« POWER FED TO EACH ELEMENTARY LOOP 130 WATT
(ALL POWER 15 RADIATED)
o TOTAL POWER FED TO ARRAY (ALL POWER 130 KWATT
IS RADIATED)
o MASS OF EACH LOOP (DIAMETER 3 MM) 10 Kg
+ TOTAL MASS OF 10! LOOPS 20 TONE
« TOTAL MASS OF ELECTRONICS (10 kg /LOOP) 10 TONS
» MASS OF « CORNER PLATFORMS (EACH 2 TONS) » TONS
o MASS OF MAGNETICALLY STIFFENED SUPPORT 15 TONS
FRAME (100 A STIFFENING CURRENT, CABLE
MADE OF SUPERCONDUCTING MATERIAL)
« MASS OF SUPPORT RETICLE (MADE OF 80 3 TONS
BORIZONTAL TETHERS. AND 20 VERTICAL
TETHERS, ALL IN KEVLAR]
o GRAND TOTAL MASS OF ORBITING SYSTEM 4 TONS

Spaceborne ELF transmitter and antenna for
communications at 75 Hz.

Figure 5.

working at 20 KHz, the array diameter could be limited
to 15 km OD and 5 km ID, with the same number of
spokes and of loops/spoke as before. In this case the
mass could be kept limited to 50 tons.

By assuming to generate the primary power with a
few, say three, power plants (such as SP-300 fission
reactors), we have to account for distribution losses of the
DC power to the single radiators, each one equipped with
its VLF transmitter. The power losses in the distribution
system are indicated in Table VI. It can be seen that,
for each of the four cases that we have considered, these
losses are affordable.

Concerning deployment, it is not an easy task to
erect in orbit a large-size, two-dimensional structure.
However, schemes that are feasible and practical can be
worked out, requiring minimal EVA activity or no EVA
activity at all.

3. Conclusions and Recommendations

There are still several technical issues that need
serious study. To name just a few: (a) investigation of
possible non-linear effects in the ionosphere, due to the
unusually high level of radiated power; (b} establishing a
rigorous theory of beam-forming in a magnetoionic
medium; (c) perform, in preliminary experiments with
rockets and satellites, the space-to-ground channel charac-
terization of the propagation paths, inclusive of determi-
nation of Doppler spread and multipath spread, in order
to establish the ultimate communication capabilities of
these paths.

Finally, the single issue of the uppermost impor-
tance, that will decide about the fate of spaceborne
tethered structures as radiators of e.m. waves, and make
them acceptable to the communications community, if
satisfactory technical solutions are found, is cost. Sim-
plicity, low mass, easy deployability are the criteria that
system designers must keep prominently under consider-
ation.
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Table IV. Properties of Each Elementary Loop
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Table V. 2° x 2° Array’s Directivity and Gain



4.

FIRST CASE

SECOND CASE

LOSSES IN FEED LINES
ALONG RADIAL SPOKES

ONLY

TOTAL LOSSES IN
DISTRIBUTION
SYSTEM

20 KHz Array of 720 loops, 15 km wheel

72 spokes; 10 loops/spoke; spoke length 5 km;
feedline resistance ~ 3 ohm; feed voltage 1.2 KV;
spoke current 10 A; 24 spokes for each SP-300
generator; 12.5 KW distributed by each spoke;
1.054 KW to each loop

20 KHz Array of 180 loops, 15 km wheel
18 spokes; 10 loops/spoke; spoke length 5 km;
feedline resistance ~ 3 ohm; feed voltage 1.2 KV;

spoke current 42 A; 6 spokes for each SP-300

generator; 50 KW distributed by each spoke;

KW (o each loop

THIRD CASE 9 KHz Array of 720 loops, 30 km wheel

5

72 spokes; 10 loops/spoke, spoke length 10 km;
feedline resistance ~ 2 ohm; feed voltage 1.2 KV;
spoke current 10 A; 24 spokes for each SP-300
generator; 12,5 KW distributed by each spoke;

1.054 KW to each loop

FOURTH CASE 9 KHz Array of 180 loops, 30 km wheel

18 spokes, 10 loops/spoke; spoke length 10 km:
feedline resistance ~ 2 ohm; feed voltage 1.2 KV;
spoke current 42 A; 6 spokes for each SP-300

generator;, 50 KW distributed by each spoke;

KW 1o each loop

Table
Examples of Computation of Power Loss in Distribution
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6.0 TETHERED HIGH-GAIN ANTENNAS

Conductive Earth oriented tethers can function as high directivity transmitting and/or
receiving antennas. The proposed transmitting antennas are traveling wave antennas, i.e.,

the antennas are non-resonant, terminated by the characteristic impedance.
The three following papers treat the transmitting and receiving antennas as follows:

The first is a white paper which proposes a 4-km vertical, downward tether to
transmit e.m. waves in the ULF (< 3 Hz) band and alternatively in the VLF (3-30 kHz)
band. The current in the antenna is 12 A for the ULF transmission at 0.25 Hz and S A for
the VLF transmission at 9 kHz. A second, upward tether is also proposed for
transforming orbital energy into electrical energy in order to recharge the batteries for a few
times before the orbit decays. Signal-to-noise ratios on the ground are estimated at +6.5
dB and +22.5 dB respectively.

The second paper addresses the propagation of ELF (30-300 Hz) and VLF (3-30 kHz)
waves in the ionosphere with particular emphasis on the latter type of waves also called the
whistlers. The far field radiation pattern is computed and conditions at the crossing of the

E-layer of the ionosphere are evaluated.

The third paper proposes a set of two vertically oriented, traveling-wave antennas
orbiting on the same orbit but separated by a distance to provide a high-directivity,
narrowly-focused radiation pattern. The two antennas, orbiting at an altitude of 10,000 km

are proposed as receiving antennas for radioastronomy in the frequency band 1-30 MHz.
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Abstract

An electrodynamic experiment on the generation and radiation of e.m. waves
from ULF to VLF frequencies (the specific band of interest extends from about 0.25
Hz to about 30 kHz) can be conducted by taking advantage of one of the future Delta
IT flights. The proposed payload has a mass of = 794 1b, well within the weight
margin of 950 1b available for secondary payloads on a Delta II/GPS flight. The
payload consists of two SEDS-type deployers, each one to deploy a 4-km-long
dielectric-coated copper wire with an overall diameter of 1 mm. The 2x4-km
conducting wires are equipped with plasma contactors, Silver-Zinc batteries,
modulator, transmitter, DC/AC-AC/DC static converter, programmer/sequencer,
etc.

In the ULF mode of operation (carrier frequency of the order of one hertz) the
self-powered antenna can draw from the ionosphere a current of 12 A dc, under
the drive of a maximum electromotive force of 2.1 kV provided by the VxBel
mechanism, where V is the orbital velocity, B the intensity of the Earth magnetic
field, and ! is the antenna's length. At the lower end of the frequency band, the
unidirectional current will be modulated by means of a controlled solid—state
switch and pulse shaper, from a frequency of 0.25 Hz up to a few Hertz. Existing
ground-based receiving stations (e.g. those established by the Smithsonian
Astrophysical Observatory and the University of Genova, Italy for the TSS-1
program), as well as existing Magnetic Observatories, will provide a world wide
network of receiving terminals to collect and record the signals on the ground.

Based on a phantom-loop radiation model, a signal-to-noise ratio (SNR) of +
6.5 dB in 10-2 Hz bandwidth is expected at the Earth surface, along the ground
track of the orbiting system, for frequencies in the ULF band. This is 27.5 dB
better than the SNR of -21 dB that the phantom loop model predicts, under a
comparable set of circumstances, for the TSS-1 electromagnetic emissions.

In the ELF mode (30 Hz—60 Hz in our case) and in the VLF mode (3 kHz - 30
kHz) one of the two 4-km tethers is used to generate DC electric power for
supplementing the on-board batteries and the other is used as a travelling wave
antenna. SNR ratios of +20 to +30 dB are expected on the Earth surface in the
VLF band, in a 1 Hz bandwidth.

Optionally, experiments could also be carried out on the potential use of the
spaceborne travelling wave antenna as a receiving antenna for scientific uses
such as ionospheric physics and low frequency (LF) radioastronomy.



Introduction

The spaceborne tether concept was first proposed (Grossi, 1973) as a
long-wire orbiting antenna usable at frequencies as low as a fraction of 1
Hz. In the area of magnetospheric physics, the usefulness of the tether was
identified to reside in the generation of artificial micropulsations of the PC-
1 class, and of neighboring classes, thus providing a useful tool to
understand several puzzling aspects of this natural phenomenon. In the
area of technological applications, the tether was proposed as a generator
and radiator of electromagnetic waves in the ULF band (unofficially defined
as the band of frequencies f < 30 Hz), in the low-ELF band (the ELF band is
officially defined 30 Hz < f < 300 Hz), and in the VLF band (officially defined
3 kHz < f< 30 kHz).

All these bands are of interest to strategic communications. At hertz
and subhertz frequencies, the tether could operate as an orbiting terminal
capable of transmitting "call-up” bell-ringing signals to deeply submerged
receivers. At low-ELF frequencies, namely near the upper end of the
allowable band of tether emissions that extends from dc to about 60 Hz
(Barnett and Olbert, 1986), the tether could operate as an orbiting facility for
the transmission of actual information-carrying messages, thus
complementing existing ground-based ELF transmitters. At VLF we
expect good efficiency in operating the tether as a travelling-wave radiator
in the band 3 kHz-t0-30 kHz, thus complementing the airborne TACAMO.

The proposed SEDS/Delta-II experiment is expected to provide
conclusive evidence about the feasibility of using an electrodynamic tether
as a generator/radiator of e.m. waves at frequencies from a fraction of 1 Hz
up to 30 kHz. The phantom loop model (Grossi, 1987), that is valid and
reasonably accurate at hertz and subhertz frequencies, is indicative of
system performance as illustrated in Table I-A.



We have also included provisions in the payload design to perform
transmission experiments in the low-ELF band and in the VLF band, by
operating the 4-km antenna as a travelling wave radiator. Table I-B
provides a first-cut performance appraisal at VLF. We could also add
(optionally) e.m. wave receivers that could perform a scientifically valuable
detection of naturally occuring ionospheric e.m. waves, especially
interesting, should the orbit of SEDS/Delta II include polar regions. In
principle, the Delta II satellite could orbit over these regions. Auroral e.m.
wave emissions and aurora currents travelling downwards along the lines
of force of the geomagnetic field would become detectable because the
vertical long—wire antenna would be roughly tangent to these lines.

By applying under comparable circumstances, within the frequency
range for which it is valid, the phantom loop model to the TSS-1 mission (20
km length, 0.2 A tether current, and 4 kV e.m.f.), the signal-to-noise ratio
(SNR) at the Earth surface is estimated at -21 dB, hence 27.5 dB worse than
the SNR expected for the SEDS/Delta-II tether. This is due to the fact that
(because of very low tether current) the magnetic moment of the TSS-1
phantom loop is a factor of 24 smaller than the moment, shown in Table I,
of the SEDS/Delta-II electrodynamic tether (SNR = +6.5 dB in this case).



Table I-A. SEDS/Delta-II Electrodynamic Tether Specifications

for ULF Radiation Experiments
Tether Length 2x4 km
Electromotive Force 2.1 kVolt
Tether Diameter 1 mm
Tether Ohmic Resistance 2x88 ohm
Tether Current 12A
Current Switching Frequency 0.25 Hz
Area of the Phantom Loop 2.88x109 m2
Magnetic Moment of Phantom Loop 3.46x1010 A m?2

Signal Intensity at the Earth
Surface, Along Track

Noise Density at 0.25 Hz
Noise in 10-2 Hz Bandwidth

Signal-to-Noise Ratio in 10-2
Hz Bandwidth

+36.5dB wrt 1pV/m
+ 50 dB wrt 1 uV/mHz-1/2

+30dB wrt 1 pV/m

+6.5dB



Table I-B. SEDS/Delta II Electrodynamic Tether Specifications
for VLF Radiation Experiments
(one 4-km tether for DC power generation;
one 4-km tether for e.m. wave radiation)

Tether Length

Tether Orbital Height
Electromotive Force (emf)

Wire Diameter

Tether Ohmic Resistance

Tether Current

Gross Primary Power Generated

Primary Power Delivered to Payload

Travelling Wave Antenna at VLF
1st case —at 9 kHz
Tether Length

Wavelength in Ionosphere, Ajono

Antenna Length in Wavelengths
Radiation Resistance
Overall Resistance
Antenna Current
Intensity of Electric Field
on the Earth Surface (in

antenna main lobe, 10°

away from vertical)
Signal-to-Noise Ratio (in 1 Hz
bandwidth)
Required Primary Power
Duty Cycle

Required Primary Power
Tether Length

Wavelength in Ionosphere, Aiono

Antenna Length in Wavelengths

Radiation Resistance

Overall Resistance

Antenna Current

Intensity of Electric Field on the
Earth Surface (in antenna main

lobe, 10° away from vertical)
Signal-to-Noise Ratio (in 1 Hz
bandwidth)

4 km

400 km

1.05 kV

1 mm (or 1.7 mm)
88 ohm (or 28 ohm)
6 A (or 20 A)

6.3 kW (or 21 kW)

3 kW (or 10 kW)

4 km
3.33 km
1.2 Xjono
130 ohm

418 ohm
489A

=150 pv/m

+22.5dB
10 kW
30% (or 100%)

10 kW
4 km

1 km
4 xiono
210 ohm

500 ohm
447 A

=450 pv/m
+32dB



Technical Discussion

General

There are several factors that make it advisable to perform experiments
on electrodynamic tethers by taking advantage of the availability of SEDS
(Carroll 1987; Harrison et al., 1989) and of the Delta-II flight opportunities
(Garvey and Marin, 1989). The most important factor is the long delay that,
for various causes, the TSS-1 mission has experienced and is still
experiencing. Should we wait for the outcome of the planned sequence of
TSS flights to ascertain the feasibility of a tether as generator/radiator of
e.m. waves at ULF, low-ELF and VLF frequencies , we would not have the
needed answers on hands before the end of the '90s. The situation would be
indeed quite discouraging, should not be for the fact that there is a SEDS
system, and there are flight opportunities provided by the Delta-II launch
vehicle.

This White Paper advocates that an experiment to prove the feasibility of
the electrodynamic tether as a generator/radiator from ULF to VLF
frequencies be included in the SEDS/Delta-II demonstration program.
During the preparation of this document, we have performed a first-cut
engineering definition of the required payload for demonstrating its
suitability to carry out the required measurements while remaining within
the mass, size, and cost constraints typical of a SEDS/Delta-II flight
mission.

Description of the Proposed Payload

The simplified block diagram of Figure 1 shows the principal elements
of the proposed payload. They are:

1) 2 Teflon-coated, conducting tethers, 4 km long, with 2 SEDS
deployers; the electrical resistance of each 4-km tether is 88 ohm for
the first mission (or in alternative, 28 ohm);



2 3 plasma contactors, complete with power supply and auxiliary
units, each rated at 20 A, capable of providing a low-resistance
bridge between each end of the tether and the ionosphere, and
between the platform and the ionosphere;

3 1 solid state switch operated by a control unit; switching rate from
0.25 Hz to 2.5 Hz; inclusive of a pulse shaper;

4) 1 switch control unit;

5) 1 programmer/sequencer;

6) 1 shunt resistance, 504 ohm, 2 kilowatt;

N Additional Silver-Zinc batteries on the Delta II second stage;
(8) DC/AC static inverter (high voltage input);

9 AC/DC converters (low voltage input);

(100 E.M. wave receivers, low-ELF band and VLF band, using the
conducting tether as a travelling wave receiving antenna (optional
items).

Figure 2 shows a possible location for the proposed payload on board the
Delta-II. The required space is a fraction of the available toroidal volume
(with mean radius 33", width 16" and height 20") all around the guidance
section of the Delta-II. The SEDS deployer is accommodated in the shaded
area of Fig. 2.

In the ULF mode of operation, the self-powered antenna can draw from
the ionosphere a current of 12 A dc¢, under the drive of a maximum
electromotive force of 2.1 kV provided by the VxBe«l mechanism, where V is
the orbital velocity, B the intensity of the Earth magnetic field, and I is the
antenna's length. At ULF, the current will be modulated by means of a
controlled solid-state switch, equipped with a pulse shaper, from a
frequency of 0.25 Hz up to approximately 2.5 Hz.



Existing ground-based receiving stations (e.g. those established by the
Smithsonian Astrophysical Observatory and by the University of Genova,
Italy, for the TSS-1 program), as well as existing Magnetic Observatories,
will provide a world-wide network of receiving terminals for collecting and
recording the signals generated by the spaceborne system.

Based on a phantom-loop radiation model, a signal-to-noise ratio of + 6.5
dB in 10-2 Hz bandwidth is expected at the Earth surface, along the ground
track of the orbiting system, for ULF frequencies.

In the VLF mode, one of the two 4-km tethers is used to generate DC
electric power and the other tether is used as a travelling wave
transmitting antenna, in the frequency band 3 kHz — 30 kHz.

This requires that the high-voltage emf due to the tether (1.05 kilovolt
DC) be inverted by a static inverter into a low-voltage AC, that becomes easy
to transform into the wanted values (by simple transformers) and converted
ultimately into the DC voltages required by the various power supplies. The
tether DC electric power generator will supplement the batteries, will
trickle—charge them and stay connected with them, in feeding the on-board
loads. We have worked out two cases for the DC generator:

(a) a 88 ohm tether, capable of feeding the payload with a 30% duty cycle.

(b) a 28 ohm tether, capable of feeding 100% of the time the same
payload.

According to the SEDS deployer's manufacturer (Tether Applications,
Inc.) a 4-km x 1-mm diameter tether with a resistance of 88 ohm can be
accommodated into the deployer canister without any substantial
modification to the hardware.

This tether will be used for the first mission. For future missions the
tether resistance could be reduced to 28 ohm by using a 1.7 mm-diameter
Copper wire. In this case the primary power generated by the upper tether
would be 21 kW, 10 kW of which are delivered to the load (batteries or VLF



transmitter) with a 100% duty cycle. In this latter case, the SEDS deployer
must be enlarged.

In the ELF mode, we will have again one tether functioning as a DC
power generator and the other one as a travelling wave antenna. Because
the 4 km antenna is now electrically short (for instance at 60 Hz, the
wavelength in the ionosphere is 50 km by night and 5 km by day, so that
even during the night, the antenna length is < 1 lambda), we would expect a
much poorer performance at ELF than at VLF. However, it costs very little
to add the ELF band to the VLF system.

An interesting possibility is to use the conducting tether as a long-wire
receiving antenna. Should the SEDS/Delta II be launched in a polar, or
quasi-polar orbit, the tether would become nearly tangent to the lines of
force of the geomagnetic field in that portion of the orbit that overflies the
polar regions. Auroral emissions of e.m. waves and aurora currents (the
latter being nearly parallel to the conducting wire), could become
detectable. To perform an experiment on the feasibility of these
measurements, and, more in general, to observe with the tether field-
aligned electrodynamic phenomena, we need to add to the SEDS/Delta II
payload, receivers to cover the following frequency bands: ULF (< 30 Hz),
ELF (30 Hz to 300 Hz), VF (300 Hz to 3 kHz), VLF (3 kHz to 30 kHz), LF (30
kHz to 300 kHz), MF (300 kHz to 3 MHz) and HF (3 MHz to 30 MHz). We
expect that a grand total of three receivers will be able to cover the seven
frequency bands above. Off-the-shelf units exist, with performance
specifications close to what we need, so that no major developmental work
is required. As far as size, mass and primary power is concerned, we
expect that each one of the three receiver units will have dimensions 3" x 2"
x 10", 1 kg mass, and 2 watts primary power requirement.

The total mass of the payload is 360 kg (= 794 1b). This includes the
tether masses, three plasma contactors inclusive of their power supplies
and auxiliary units, 3 receivers, two Marman clamps, and two additional
250 Ah Silver-Zinc batteries on the Delta II which enable a mission
duration of 4 days. Two of the three plasma contactors are installed on the
end masses of the SEDS tether. One is attached to the platform itself. The



primary power requirement for the payload at ULF is 28 volt dc, 5.3 ampere,
146 watt and 10 kW at VLF. Use will be made of the Delta-II telemetry
channels available to payloads. This use, however, will be very limited
because the scientific data from our experiment are collected and recorded
by ULF/ELF/VLF receiving stations on the Earth surface, and not onboard
the platform.

Orbital Flight Parameters

The parameters for the orbital flight of the proposed electrodynamic
tether experiment could be similar to the parameters of the first
SEDS/Delta-1I flight (DeLoach et al., 1990), presently scheduled for
December 1992, for the measurement of the dynamic properties of the SEDS
tether.

We estimate that by adding 260 1b of Silver-Zinc batteries (this figure is
already included in the total mass of 790 1b) to the Delta's second stage the
mission can last as long as 4 days. The orbital decay will be approximately
2.5 km/orbit during electrodynamic operations.

A nominal inclination of 37° and an orbital altitude greater than 400 km
with a circular or a low eccentricity orbit are acceptable. The prior
knowledge of the orbital parameters is a particularly important factor in
this case because we must establish the precise location of the receiving
sites on the Earth surface as a function of the orbital parameters. We must
make sure that the orbiting system flies as close as possible over each
receiving site. In later flights, we could relax this specification and explore
signal detectability at substantial distances from the ground track. For the
first electrodynamic mission, however, the receiving stations should be
strictly located along the ground track.

Ground-Based Data Collection

Several instrumented sites at various locations on the Earth surface
will be used for data collection and recording, equipped with the same
instrumentation that has been developed for the TSS-1 electrodynamic
mission. The existing instrumentation is mobile and can be relocated at
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sites that are on the ground track of the proposed SEDS/Delta-II mission.
This instrumentation consists of the following equipment:

(a)  Receiving/recording system developed for TSS-1 by Rice University
under a subcontract from Smithsonian Astrophysical Observatory. This
instrumentation, complete with data recorders, uses the following sensors:

- One set of 3-axis magnetic field sensor BF-4 (a coil magnetometer) for the
band 0.3 Hz to 500 Hz;

- Two sets of 3-axis magnetic field sensor BF-6 (also a coil magnetometer)
for the band 100 Hz to 100 kHz.

(b)  Receiving/recording system developed for TSS-1 by University of
Genova, Italy, using sensors that were loaned to University of Genova by US
Navy, NUSC, New London, CT (NUSC sensors are encapsulated in Bentos
glass spheres suitable for underwater deployment). The sensors are:

- Two sets of 3-axis induction coil magnetometer for the band 0.01 Hz to 100
Hz (Gritzke and Johnson, 1982);

- One set of Varian, optically pumped, cesium vapour magnetometer.

Another magnetometer will be probably added to the sensors that the
University of Genova borrowed from the US Navy: a SQUID, multi-axis
system that the University of Genova plans to procure in time for the TSS-1
flight.

Given the planned orbital parameters, the schedule of data collection at
each of the ground-based sites can be easily formulated with all necessary
time accuracy. The number of channels that will be recorded at each site
are a function of the number of sensors and of the number of axial
components for each sensor. In addition, a channel will be devoted to
station's identification and time information consisting of Epoch and of 1-
second time marks. Pertinent telemetry data from SEDS/Delta-II will be
collected, processed, and formatted by the on-board computer (Rupp, 1988).
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Data will then be transmitted to the ground-based telemetry station(s),
assigned to the flight, via the Second Stage telemetry link.

Further Implications of Proposed Experiment

The electrodynamic drag associated with DC power generation and
with e. m. wave generation and radiation at ULF with a 50% duty cycle
produces an orbital decay estimated at 2.5 km per orbit. This orbital decay,
while tolerable for the proposed experiment, could not be acceptable for an
operational system. The orbital decay, however, can be eliminated
completely by removing the DC power generation mode and by eliminating
the unidirectionality of tether current (unidirectionality is now present
when the tether operates in the ULF mode; it is also necessarily present
when generating DC electric power).

We expect the tether to be trackable from the ground (Garvey and
Marin, 1989) and its dynamic behavior will, therefore, provide data for
model validation.

Brief Outline of the Proposed Program

A program of 2.5 year is presently envisaged for the development,
manufacturing, testing, and integration of the flight hardware. The
Principal Investigator will be Dr. Mario D. Grossi, SAO, Radio &
Geoastronomy Division. Co-Investigators in the program will be Dr. Enrico
C. Lorenzini and Dr. Mario L. Cosmo, both from SAO.

The program consists of: (1) an instrumentation hardware development
effort to be performed by SAO's Central Engineering Department; and (2)
an analytical effort. Specifically, the hardware development effort will
include fabrication, integration, and testing. The analytical effort will
include: (a) a tether dynamics analysis to verify that a current < 20A
flowing in a single 4 km SEDS tether, or a current of 12 A flowing in the 2x4
km tether does not produce unacceptable dynamic instabilities; (b) an
analysis of tether-induced e.m. wave emissions and orbit-to-ground e.m.
wave propagation for a more reliable estimate of the signal-to-noise ratio, at
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the Earth surface, in the frequency band 0.25 Hz to 60 Hz (ULF/Low ELF)
and in the frequency band from 3 kHz to 30 kHz (VLF) (this includes the
study of the conducting tether as a travelling wave antenna at ELF and
VLF); (c) a system analysis in support of the hardware development; (d) a
post-flight data processing and analysis.

Piggy-back accommodations are expected to be provided to the proposed
payload on board a USAF (GPS) Delta-II launch (the 950 1b mass available
to secondary payloads is well above the mass requirement of the proposed
payload) or on any other commercial launch of the Delta II with sufficient
mass margin for secondary payloads.
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Abstract

An orbital emplacement for the transmitter and
the antenna of a communications link at ELF (30 to 300
Hz) and VLF (3 kHz to 30 kHz) to submerged sub-
marines, has been considered since the very inception of
the space age. Only recently, however, space technology
has reached sufficient maturity, for system designers to
undertake serious studies of this link configuration.

The optimistic outlook stems from recent space
technology developments, such as the design and construc-
tion by NASA of long orbiting tethers, and the testing,
onboard Shuttle Orbiter ATLANTIS, scheduled for Sum-
mer 1992, of the first spaceborne 20 km metal wire.
This is known as the Tethered Satellite System #1 (TSS-
1, in short), a space mission that might be possibly
followed by other flights, with tether lengths that could
reach 100 km.

Once deployed at a height of, say, 300 km, from a
Shuttle Orbiter, or from another suitable platform, a long,
thin tether aligns itself along the local vertical by virtue
of the gradient of the Earth gravity field. If made of
metal, the tether can function as a VED (Vertical Electric
Dipole) transmitting antenna at ELF and VLF.

1. INTRODUCTION TO SPACEBORNE TETHERS:
AN EMERGING TECHNOLOGY FOR USE IN
RADIOPHYSICS AND RADIOENGINEERING

Sometime in Summer 1992, a new structural
element will make its appearance onboard the Shuttle
Orbiter: a tether consisting of a very long, thin filament
attached, at one end, to the Shuttle, and holding “by the
leash,” at the other end, a satellite. Hence the name
“Tethered Satellite System,” in short TSS, that has been
given to this joint initiative by NASA and ASI (Italian
Space Agency).

The Summer 1992 tether, a flexible thread with a
diameter of a few millimeters, will have a length of 20
km. However, in later missions, tethers of 100 km length
and even longer are a distinct possibility.

The tether aligns itself with the local vertical and
stays so aligned, by virtue of the vertical gradient of the
Earth gravity field. The tether’s orientation, both for
upward and downward deployment from the Shuttle,
deviates only slightly from the local vertical, and its
movements about that vertical resemble the

angular
angular movements of a pendulum attached to the
Shuttle. While the Shuttle Orbiter moves in its orbital

flight around the Earth, the tether stays roughly aligned
with the center of the Earth.

In a {ew years, once that such basic operations as
deployment and retrieval are thoroughly understood, the
tether will find wide-spread use as a flexible structural
element (capable of responding to traction) in large space
structures of one, two, or three dimensions. This use is
similar, in several respects, to the function of ropes in
suspended bridges.

While two-dimensional and three-dimensional teth-
ered structures belong to the long-term future, the
attention of flexible-spacecraft designers will concentrate,
in the short term, on the one-dimensional case. A single
vertical tether, notwithstanding its simplicity, is capable
of performing a variety of functions, among which, if the
tether is made of metal, are the following:

(a) operating as a transmitting antenna (either
resonant, or non-resonant, such as a travelling-wave
radiator), for the effective radiation of electromagnetic
waves. This specific use is the object of this paper.
Tethers can be made of such a length that they radiate
effectively e.m. waves at frequencies as low as ELF and
VLF;

(b) operating as a receiving antenna, again either
resonant or non-resonant;
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(c) performing as a self-powered antenna, for
radiation of e.m. waves at ULF (frequencies of 1 Hz or
lower);

(d) generating DC electric energy, at the expenses
of the platform’s orbital energy. The electromotive force
is v x B . £ where v is the orbital velocity (about 7.7
km/sec for a height of 380 km), B is the Earth magnetic
field (about 0.3 10+ Weber/m?), and ¢ is the length of the
tether (20 km). The circuit closure is provided by the
magneto-ionic plasma of the Earth ionosphere, while the
contact between each end of the tether and the ionosphere
is provided by a “plasma bridge” also known as a
“plasma contactor.”

As already told, NASA and ASI will launch in
orbit, in Summer 1992 the TSS-1 mission, that uses a 20
km-long metal wire. This mission will verify, first of
all, such dynamical issues as the feasibility of safe
deployment and retrieval. In addition, it will perform
experiments on the electrodynamic and electromagnetic
mechanisms (¢} and (d) above.

2. RADIATION OF EM. WAVES FROM A TETHER
IN THE IONOSPHERE TO THE SURFACE OF
THE EARTH, AT ELF AND VLF FREQUENCIES.

21 Introductory Remarks

The possibility of transmitting electromagnetic
waves from a Shuttle Orbiter to the surface of the earth
is discussed in a paper by Grossi et al. (1991). The
antenna generating the electromagnetic field consists of a
vertical wire (the tether) which is driven with the Shuttle
as ground. In this Section 2, the electromagnetic aspects
of the problem are examined with available knowledge as
the basis. Because the existing theory of the properties
of the ionosphere and of antennas moving in it are
approximate and complicated, quantitative results can be
obtained only in terms of a relatively simple model.

2.2 The Model

The specific problem to be investigated is the
electromagnetic field on the surface of the earth generated
by currents in a vertical antenna moving in the F-layer of
the ionosphere at a height of 400 km. The length of the
antenna is 4 km. It is driven at its upper end by a
generator voltage V, against the space shuttle as a ground.
A schematic diagram is in Fig. 2-1.

The ionosphere is assumed to extend from a height
of 150 km to infinity as a homogeneous medium. It is
given a sharp boundary with air as a simplification of the
gradual layered boundary between 100 and 200 km.
With the shuttle orbiting the earth along a great circle
over the poles, the earth’s magnetic field B, ~ 0.5 x 10%

" Tesla is roughly parallel to the vertical antenna over the
poles and perpendicular to it over the equator.

2.3 The Properties Of The Ionosphere
The ionosphere is a plasma consisting of electrons,
protons, and neutral particles. In the F-layer, the

electron and ion densities, 7, and 1, have the following
values:

Daytime: , = n, = 1.4 x 10'? per m3, (1a)
Nighttime: 5, = n; = 4 x 10! per m3. (16)
The electric charges are

g = —e = -16 x 10719 Coulombs (2a)

& = -¢q = 1.6 x 107!° Coulombs (28)
(for protons)

The masses are
m, = 9.1 x 1073 kg, (3a)

m; = 18363 x 19 m, =

317 x 107% kg (3b)

The reason for including the factor 19 in (3b) is that the
lower ionosphere consists of a mixture of ions including
N*, N;, Oj, with a mean mass of 19 amu.

The plasma frequencies of the electrons and ions for
daytime are

wi = 2 = 4485 x 10% W, = 667 x 107, (a)
07

o= M a9 10, = 3575 x 10° (48)

wp, = eo—m; = . x 1 wp‘- = . X (

With

By = 0.5 x 107* Tesla, (5)

the gyrofrequencies are

w, = B _ g5 & 106, (6a)

1>

3& 3
1l

wy = 2.53 x 10? (6b)

The effective collision frequencies—representing the sum of
the electron— ion and electron—neutral collisions—are

Daytime: v ~ 10% Nighttime: v ~ 4 x 10® (7)



2.4 Plasma Waves In The Ionosphere

The ionosphere is a complicated medium for the
propagation of waves generated by oscillating currents at
an angular frequency w in an antenna. The frequencies
of interest for the tether experiment are in the following
ranges:

VLF: 3 kHz < [ < 30 kHz or

1.88 x 10* < w < 1.88 x 105 (8a)
ELF: 30 < f < 300 Hz or 1885 < w < 1885 (8b)
The specific frequencies to be investigated are

f =9 kHz and 30 kHz; [ = 40 Ha (9)
Three types of waves are examined as follows.

a) Electromagnetic Waves,

The condition for propagating waves of this type is

w >> w, = 253 x 107 (10)
This is satisfied by the entire VLF range (8a), but not by
the entire ELF range (8b). For frequencies that satisfy
(10}, the plasma behaves like a homogeneous medium
with the relative effective permittivity and conductivity
given by

2 2
w Vegw,
€ = 1 ~ ———— i 5 6, = 54— i 5 (11)
wt o+ v wt + v

when the steady magnetic field B is parallel to the
electric field. These are modified when B; is in the
direction of propagation, as shown in King and Harrison
(1969) (Section 2.12). With (11), the wave number is

. 1/2
10,
fm k(w0 ) -

172
wy - \1/2
ko |1 - 3 (1 + ip) (12)

where ky = w/e,

_ o _ ww?
P= e, wlw? + v? - Wf) (13)
and
(1 +1ip)/2 = f(p)+ ig(p). (14)

The quantities f{p) and g(p) are tabulated over a wide
range in King and Prasad (1986).

When

€,

er

>0 or W+ V> W (15)
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the wave number becomes

2

1/2
. W
ki =8, + fa; B; = k0<1 - Wpu?) (e}, (16)

1/2
o2
o = ky (1— — 2) 9(p) < B, (17)

w? + v

so that propagation with low attenuation in the form

e = e (18)
Alternatively, when

is possible.

< 0 orw® + v < Wt (19)

€ P

er

. 1/2
ki =B + 1a; fB; = ko( ,:‘Y P _1) o(lpl) (20)

w? 1/2
a,~= kO( 5 £ 2 ‘l> /(Ip”>ﬂn (21)

so that the high exponential attenuation makes propaga-
tion impossible.

With w? = 44.55x 10" and w?+ 1?7 = (1.88 x 10*

to 1.88x10°)* + 10° = 3.53 x 10® to 3.53 x 10 for the
VLF range, a; > f; and no propagation is possible.
When the steady magnetic field B, is not parallel to the
electric field, propagation is likewise generally not possible
except in the Whistler mode considered in the next
section.

b) The Whistler Mode

The existence of the steady earth’s magnetic field
B, makes propagation in other modes possible. Because
the analytical formulation is extremely complicated, it is
necessary to introduce the simplifying approximation of
neglecting the losses due to collisions and treating the so-
called cold plasma. This has been shown to be a good
approximation of hot plasmas in its general description of
the wave propagation.

A special range of propagation occurs when the
parabolic branch of the dispersion curve is applicable.
This is shown by Denisse and Delcroix (1963, page 95).
The condition underlying propagation in this mode is

w < w

e = 888 x10° (22)

This follows from Fig. 8.7 in Denisse and Delcroix (1963).
This is satisfied by the entire VLF range (8a).

The wave number k; given by Denisse and Delcroix
(1963, p. 98) with w) << wl is

kow,
;= 2 = 237 x 100%™ =
73
(wuy)
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0.749 x 10~ 4w!/? (23)

For the two frequencies w = 565x10' and w =

1.88 x 105, this gives

ki A _ [100  for f =9 kH:
- T 1546  for f = 30 kH:

Specifically with

1.88 x 10~% m-! {33.4km
k, = Ay = 25
0 {6.27 x 10-4 m-’} or %o (25)

1.88 x 1072 m! 334 m
b = {3.42 x 1072 m-l} o h= { (26)

The effective permittivities are

k2 10!
L= A= 27
«“= b {0 (27)

The antenna (tether) length is A = 4 km, so that
R 12
DY B3 &

¢) Alfven Waves

for [ 9 kHz
for f = 30 kH:

(28)

The ELF range (8b) does not satisfy the conditions
for propagation with the Whistler mode. However, it
does satisfy the conditions for propagation with Alfven
waves. This condition is

W << W

o= 253 x 10° (29)

For Alfven waves, the phase velocity is the so-called
Alfven velocity given by

cwy 4
a = — = 7077 x 1074 = 2.115 x
WP"

10° m/sec = 211.5 km/ sec (30)

When a/c << 1, as in (30), the wave number is well
approximated by
. w . wicle m
ka=ﬂa-+-ma~—+x—§;ao=—L2 (31)
a 204a ’ ¢
For the frequency f = 40 Hz or w = 251.3 a, is entirely
negligible so that

ki ~ B = 2 = 1189 x 107° m7; g, ~ 0. (32)
and
Yo = 2% = 5288 km (33)

The antenna length A = 4 km corresponds to

7\". = 076 (34)

2.5 The Air-Ionosphere Boundary

The electromagnetic field in the jonosphere gener-
ated by the current in the antenna travels outward with
amplitudes at sufficient distances determined by the far-
field pattern. The field incident on the ionosphere-air
boundary is locally approximately a plane wave which is
reflected and refracted according to Snell’s law. Since the
Whistler-mode field is incident from the ionosphere (Re-
gion i, wave number k) on the air (Region 0, wave
number ko) with k;/k; = 100 when f = 9 kHz, it
experiences total internal reflection when 6 > 6,,, where
the critical angle is

6., = sin~! %Q = sin~! (0.01) =
i

001 radian = 0.57° (35)

This means that the only field that is transmitted into the
air arrives at the boundary within a small cone with
angle ® = 0.57°. This suffers reflection and refraction at
the boundary. At normal incidence, © = 0, the reflection
and transmission coefficients for the electric field are

Ck—ky 99

b= k7% = o1 T 09
fi= 2 = 2 oo108 (36)

ki+ky 101

Thus, there is only a small circular window from the
ionosphere into the air. It is directly below the antenna
and, at the distance 250 km from the antenna to the
boundary, it has the radius 2.5 km. Even in this
window, the field incident from the ionosphere is largely
reflected back upward with the reflection coefficient
—0.98. The transmission coefficient is 0.0198 for propa-
gation into the air.

In order to transmit a field through the window
into the air and down to the earth, the field pattern of
the antenna must have a significant amplitude within
0.57° of the perpendicular.

2.6 The Antenna

The properties of antennas in magnetoplasmas are
very complicated. Analyses have been carried out by
Seshadri (1965), (1968) and Bhat (1973) with the steady
magnetic field parallel to the antenna and by Wunsch
(1967) with the magnetic field perpendicular to the
antenna. A detailed study of these investigations and
application of their results to the present problem are
beyond the scope of this preliminary study. For present
purposes, the antenna will be treated as immersed in an
infinite homogenous medium with the wave number &
characteristic of the Whistler mode for the VLF rate (8a)



and k, for the Alfven mode for the ELF range (8b).

There are two possibilities for the antenna with
the length & = 4 km and the radius ¢ = 1 mm. These
are: (a) The antenna is coated with a layer of dielectric
with the radius b ~ 2 mm. If the dielectric is teflon,
¢, = 2.1. (b) The antenna is bare (or the insulation is
so thin that 6/a ~ 1). The properties of the antenna
are very different in these two cases.

a) The Insulated Antenna

A conductor with radius a and a dielectric coating
with radius b, relative permittivity ¢;,, and wave number

ky = kg,/€s, ~embedded in an infinite homogeneous
ionosphere with the wave number k; such that

2 . .. .
|k,»| >> kf, has the properties of a transmission line.
The wave number is

k, = kd{l o

In(b/a)
1/2
[’(2&:‘? ¥ %) + In I’sbl -0.327] (37)
The characteristic impedance is
7 = Wby, b (38)

27k} a

In these formulas, r, is the resistance per unit length of
the wire. For the Whistler mode at f = 9 kHz, it follows
that

ky, = 1.88 x 1074 m~!, Kk = 2.72x107*m™},

k; = 1.88 x 10"%m~! (39)
With radius @ = 1 mm, ry = 22x10"* Q/m so that
27rg/wy, = 0.0195 Q/m. This is negligible compared

with 7/2, which contributes the radiation resistance per
unit length. With 4§ = 2 mm,

ky = B, + iay =(1.1+10.001)x10~3m-1  (40)
so that
B, = 1L1x10"%m~Y, X, = 57x10°m = 57 km, (41)
Z =1164 1 (42)
For a tether length of A = 4 km,
h/X, = 0.70 (43)
The electrical length is sufficiently short so that,
regardless of whether the antenna is terminated in its
characteristic impedance so that a travelling wave of
current is maintained or it is simply driven as a monopole

against the space shuttle, the principal lobe of the field
pattern is in the equatorial plane 6 = /2 and no

significant field is maintained in the downward direction
near 6 = 0. The insulated antenna is ideally suited for
a horizontal orientation of the antenna and is essentially
useless for the vertical orientation.

b} The Bare Antenna

At f = 9 kHz for the Whistler mode, the bare
wire of length A = 4 km = 12 ), is electrically very long.
If it is terminated to produce a travelling wave of current
approximately given by I, = Ioc'*"l, the electric field at
large distances from the antenna is

. kir b _
ro_ g _C__ —ikz’ cos6
E; = i /(; I(2/)e sin Bdz’ (44)
with
L) = L)X, 1o)= - 2T (45)
14
where
v~2nm 2t (46)
a
Since wy,/k;¢; = 1, the result is
V cikl'r
£ = Yt ye) (47)

|7(8)| = Lee sin[%k‘h(l ~ cos 6)] (48)

1 - cos

The far-field pattern given by |f ()] l is shown graphically
in a polar plot in Fig. 2-2. It is seen that the principal
lobe is downward-directed and rotationally symmetric
with maximum at 6, = 14°2. The field at 6 = 0° is,
of course, zero. There are eleven minor maxima between
the principal one and 8 = w/2.

The field that enters the air from the ionosphere
according to the field pattern in Fig. 2.2 is extremely
small since the angle of incidence on the ionosphere-air
boundary must be almost vertically down, specifically
within 0.57° of the vertical. The magnitude of the field
at ©=001 rad = 0.57° is f(6)= 0.38, whereas it is
[(6) = 7.34 at the maximum.

In order to direct the maximum of the field
pattern vertically down continuously, the antenna must be
tilted 14°.2 from the vertical and then made to rotate so
that its lower end describes a circle. Since the tether
normally oscillates through an angle near 14°.2, it is only
necessary to impart a small transverse push to have it
trace the edge of a come. The rate of circulation is
irrelevant so long as the tether continuously maintains an
angle of 14°2 with the vertical.

If the maximum of the field pattern in Fig. 2-2 is
directed down, the full field intensity with I f(9)| = 7.34
is directed onto the circular window on the ionosphere-air
boundary so that even with the small transmission
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coefficient, the effective value of |f(©)| in the air is
| f(©) |=0.15.

With h/a = 4x10%/107% = 4x 105,
¥ = 2In(2h/a) = 318, (49)

and r = 400 km,

V, 1 v, 1
r = J - = —0— . =
|E5| = 3~ x015 18 o155 X015
Vox1.18 x 1078 (50)

For an applied driving voltage to the antenna of Vo ~
1kV, the field incident on the surface of the earth is

EL| ~ 1.18x10°%V/m (51)
(°]

This is easily measurable. The current at the driving

point of the antenna is obtained from (45). It is
27 x 10°

Note that ¢ = ¢;/¢}? = 1207/10 = 12m

2.7 Conclusion

There are several possible modes for the transmis-
sion of electromagnetic waves through the ionosphere to
the earth surface. The Whistler mode appears to be the
most promising for the VLF band when the source is a
vertical travelling-wave monopole erected on the lower
side of the space shuttle. In order to maintain a
continuously significant field on the surface of the earth
or sea, it is necessary that the antenna be displaced from
the vertical by an angle of 14°2 for f = 9 kHz and
rotated so that it traces the surface of a cone.

3. SMALL EXPENDABLE-TETHER DEPLOYMENT
SYSTEM (SEDS-1)

31 General Description

The Small Expendable-Tether Deployer System
(SEDS-1) is being built by NASA as a low-budget
secondary payload for a March 1993 flight on a U.S. Air
Force Delta II/GPS mission. SEDS will deploy a 23 kg
endmass (or payload) at the end of a 20 km long tether.
The experiment purpose is to test and demonstrate the
feasibility of the design concept and to verify the
computer models that have been built to predict tether
dynamic behavior during this type of low tension deploy-
ment. The key features of SEDS are its simplicity, low
tension deployment with minimum braking, non-retrieva-
bility of the tether (the tether is cut after it is fully
deployed), and low cost. The 20-km deployment, which
is initiated by spring ejection of the endmass at an initial
speed of 1.5 meters per second, last about 90 minutes

{one orbit).

3.2  Design Concept

SEDS consists of four parts: 1) the deployer
{tether wound on a core, canister cover and base plate);
2) the brake/cutter assembly; 3) the electronics box;
and 4) the endmass (or payload). A view of SEDS is
show in Figure 3.1. The tether unwinds — about 46500
turns - from the outside periphery of a stationary core—
there is no rotating reel. After unwinding the tether
travels through a small opening in the top of the canister,
to a friction brake, a tensiometer, then to the tether
cutter, and finally attaches to the payload. The entire
system weighs approximately 39 kg most of which is
the 23 kg endmass.

The brake cutter assembly contains a running-line
tensiometer, stepper motor for turning the brake, the
friction brake shaft and gearing, and tether cutter. The
friction brake slows the deployment speed by wrapping
several turns of the tether around a small shaft when
approximately 19-km or 41026 turns of tether have been
deploved.  The tether is made from a polyethylene
synthetic fiber called SPECTRA-1000. The 0.75 mm
diameter is much larger than necessary for strength on
this first flight but this size gives significant micrometeor-
oid protection (about a 0.1 percent risk for one orbit).

The endmass (or payload) weighs 23 kg and has
an overall size of 20 x 33 x 41 cm. It contains a three-
axis accelerometer, tensiometer, magnetometer, its own
power, computer, telemetry system and supporting elec-
tronics. Two antennas are mounted on the sides for data
transmission directly to the tracking stations during the
experiment. The endmass and tether are cut, at the
Delta II end, after deployment and burn-up on reentry
into the atmosphere.

33 Electronics System

The SEDS electronics data and control system will
record, store, and continuously downlink data over the
Delta II S-band telemetry channel. It counts the turns
as the tether unwinds from the spool, logs the time for
each turn, serves as an event timer, responds to sequencer
commands from the Delta II second stage, controls the
stepper-motor/brake system, and activates the pyrotech-
nic charge for the tether cutter. Data stored, besides the
turncounts, are tether tension, temperature, and supply
voltage. The storage capacity is 160 kilobytes (approxi-
mately 115 kilobytes are required) and the downlink
capacity ranges from 1 kilobit per second to 64 kilobits
per second (requirement is 4.8 kilobits per second). The
entire memory can be dumped in six minutes. The
system weighs about 3 kg and has an overall size of 8 x
13 x 29 cm. A block diagram is shown in Figure 3.2.
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The tether deployment begins 3780 seconds after
Delta II lift-off at the apogee of a 204 x 704 km orbit.
Full deployment of the 20 km tether is reached 5100
seconds later. After full deployment, the tether swings
for ten minutes through an angle of approximately 50
degrees toward the local vertical. The tether is cut
during the swing when it is near the local vertical position
and over the Pacific Ocean at about 150 degrees east
longitude. This occurs at 5800 seconds (slightly more
than one orbit) after deployment begins. The reentry
takes one-third of an orbit so the tether and payload
should reenter over the Pacific Ocean near 100 degrees
west longitude or just off the coast of Mexico. Table 3.1
shows the Delta II/SEDS-1 sequence of events. Figure
3.3 gives the SEDS-1 ground track.

3.5 Tether Dynamics Calculations

A major goal of the first SEDS flight is to validate
the extensive amount of computer modelling that has
been done during the last several years to predict the
dynamic behavior of a tether in space. The results of
some recent calculations done by Control Dynamics are
shown in Figure 3.3 for a 20 km deployment starting at
the apogee of a 204 x 704 km orbit and lasting for 5800
seconds (1.6 hours or a little more than one SEDS orbit).
Full deployment is reached at 5100 seconds followed by a
50 degree swing to the vertical that is completed at 5800
seconds when the tether is cut. During most of the
deployment period the tether position is forward of
vertical at an angle of about 50 degrees.

The tether length, deployment speed, and tension
are shown in Figure 3.4. Deployment begins with spring
ejection of the endmass at a speed of about 1.5 m/s.
Tension forces initially are 0.03 to 0.04 n (3 to 4 g) with
a slight increase beginning around 2700 seconds reaching
a value of 3.0 n at full deployment (5100 seconds) and a
maximum value of 4 n just before the tether is cut at
5800 seconds.

3.6 Measurements

The key measurements are the turns of the tether
versus time as the tether unwinds. This is sensed
optically and stored in the electronics system memory.
The command times for operating the stepper-motor
brake and the cutter are based on this measurement.
Also, tether length and payout speed are determined from
the turns data.

The time duration of each turn will be compared
with similar laboratory test data to evaluate the accuracy
of ground test results in predicting flight performance. A
reasonably close comparison is important to succeed at
developing future tether applications.
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Other data collected will be temperature, tension
(just before the final exit guide), and supply voltage.
Radar data will be collected on the ground giving the
Delta II and payload position.

4. FEASIBILITY EXPERIMENT
4.1  Science And Technology Objectives

There are several issues of feasibility concerning
SEDS tethers that must be verified experimentally, before
these tethers can be used as antennas in communication
systems of practical relevance. First of all, we must
verify that the dynamics of tether deployment and
station-keeping is well understood, and fully controllable.
NASA-MSFC has scheduled several flights of SEDS sys-
tems, as piggy-back payloads on board the Air Force
Delta-II rocket, to test tether dynamics. There will be a
SEDS-1 flight in March 1993, a SEDS-2 flight in March
1994, and a SEDSAT mission in July 1994 (this mission is
under study but has not yet been approved). There will
also be an electrodynamic mission called PMG in June
1993.

Once that the dynamics is well understood, we
should start experimenting with the radiophysics and the
radioengineering issues that are fundamental to the use of
SEDS tethers as antennas, in communication links from
orbit to Earth surface.

The most relevant of the scientific investigations to
be carried out are the following:

(a) guidance of the e.m. waves radiated by the
tether, along the lines of force of the Earth geomagnetic
field, in the whistler regime, at VLF frequencies;

(b) Alfven wave guidance, also along the geomag-
netic lines of force, at ELF frequencies, below the ion
cyclotron frequency;

{c) investigation of non-linear effects in the iono-
sphere, due to the high level of radiated power. This
involves determining the threshold of occurrence of non-
linear effects, and establishing the analytical dependence
of these effects upon the level of radiated power;

(d) determination of the angular aperture of the
cone of capture of e.m. waves by the lines of force of the
Earth magnetic field;

(¢) determination of the transmission and of the
reflection coefficients at the boundary between the bottom
of the ionosphere and the top of the atmosphere, as a
function of the angle of incidence (from above) of the e.
m. waves radiated by the SEDS tether, when they reach
this boundary in their descent toward the Earth surface;

(f) determination of the spatial extent of the
illuminated area on the Earth surface. This is essential
information, in order to establish the minimum number
of satellites that are required to cover at all times a large
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portion of the Earth surface (such as 60%, 80% or 100%).

The investigations listed above have an intrinsic
scientific value within the realm of radiophysics. In
addition, they represent essential steps that must be
undertaken toward the goal of determining the feasibility
of using SEDS tethers as antennas in space-to-ground
communication links.

4.2  Application Goals

Because the ultimate use of the ELF/VLF propa-
gation paths from orbit to Earth surface is in communica-
tions, we must characterize these paths as communication
channels. The knowledge available on the applicable path
properties is extremely limited, so that we must start
from the fundamentals, and measure on the occasion of a
first experiment, the following parameters:

(1) the response of the path to a “delta function”
in the time domain. This will provide the measurement
of the group delay, and of the time spread, inclusive of
multipath spread;

{2) the response of the path to a “delta function”
in the frequency domain. This will provide the measure-
ment on the frequency spread, inclusive of Doppler shift
and spread;

(3) the measurement of the path losses and of the
noise;

{(4) the measurement of the spatial and temporal
variability of the channel properties;

(5) the distortion that affects specific communica-
tion waveforms, that are transmitted through the channel.

Once that the parameters above have been meas-
ured, it will be possible for communicators to select a
waveform and to design a link that makes the best use of
the available paths.

5. A SEDS/DELTA-II PAYLOAD FOR A FIRST FEA-
SIBILITY EXPERIMENT

5.1 General

There are several factors that make it advisable to
perform experiments on electrodynamic tethers by taking
advantage of the availability of SEDS (Carroll 1987;
Harrison et al., 1989) and of the Delta-II flight opportuni-
ties (Garvey and Marin, 1989). The most important
factor is the low cost and the high frequency of flights of
SEDS/Delta-II. In this paper we illustrate an experiment
for inclusion in the SEDS/Delta-II demonstration pro-
gram. The payload should be limited to radiation of
em. waves in the VLF band (experimenting with ELF
waves, a more difficult undertaking, should be considered
for later times). The tether could be 4 km long, and

should radiate a frequency of ~ 9 kHz. A second tether,
also 4 km long, could be used to generate DC electric
power, with the objective of recharging the payload’s
batteries.

5.2 Description Of The Payload

The simplified block diagram of Figure 5-1 shows
the principal elements of the proposed payload. They
are:

(1) 2 conducting tethers, each 4 km long, each with its
deployer; the electrical resistance of each 4-km
tether is 88 ohm for the first mission (later-on, it
could be lowered to 28 ohm); one tether teflon
coated and one tether bare.

(2) 3 plasma contactors, complete with power supply
and auxiliary units, each rated at 20 A, capable of
providing a low-resistance bridge between each end
of the tether and the ionosphere, and between the
platform and the ionosphere;

(3)  one solid-state VLF transmitter to feed one of the
two tethers as a travelling-wave (TW) antenna at
~ 9 kHz, To function as a TW radiator, the
antenna requires the termination of the free end of
the tether with a resistor equal to its equivalent-
line characteristic impedance. Thus, the plasma
contactor makes the “ground connection” to the
ionospheric plasma;

(4)  additional silver-zinc batteries on the Delta-II sec-
ond stage;

(5) DC/AC static inverter (high voltage input);
(6) AC/DC converters (low voltage input).

Figure 5-2 shows a possible location for the
payload on board the Delta-II. The required space is a
fraction of the available toroidal volume (with mean
radius 33", width 16" and height 20”) all around the
guidance section of the Delta-II. The SEDS deployer is
accommodated in the shaded area of Figure 2.

As a DC electric power generator, the tether can
draw from the ionosphere a current of 12 A DC, under
the drive of a maximum electromotive force of 2.1 kV
provided by the V x B .{ mechanism, where V is the
orbital velocity, B the intensity of the Earth magnetic
field, and £ is the tether’s length.

As already indicated, while one of the two 4-km
tethers is used to generate DC electric power, the other
tether is used as a travelling wave transmitting antenna,
at the frequency of 9 kHz.

This requires that the high-voltage emf due to the
tether (1.05 kilovolt DC) be inverted by a static inverter
into a low-voltage AC, that becomes easy to transform
into the wanted values and converted ultimately into the



DC voltages required by the various power supplies. The
tether DC electric power generator will supplement the
batteries, will trickle charge them and stay connected with
them, while feeding the on-board loads. We have worked
out two cases for the DC generator:

(a) a 88 ohm tether, capable of feeding the
payload with a 30% duty cycle.

(b) a 28 ohm tether, capable of feeding 100% of
the time the same payload.

According to the SEDS deployer’s manufacturer
(Tether Applications, Inc.) a 4-km x l1-mm diameter
tether with a resistance of 88 ohm can be accommodated
into the deployer canister without any substantial
modification to the hardware.

This tether will be used for the first mission. For
future missions the tether resistance could be reduced to
28 ohm by using a 1.7 mm-diameter Copper wire. In
this case the primary power generated by the upper tether
would be 21 kW, 10 kW of which are delivered to the
load (batteries or VLF transmitter) with a 100% duty
In this latter case, the SEDS deployer must be

cycle.
enlarged.

The total mass of the payload is 360 kg (~ 794
Ib).  This includes the tether masses, three plasma

contactors inclusive of their power supplies and auxiliary
units, two Marman clamps, and two additional 250 Ah
Silver-Zinc batteries on the Delta II which enable a
mission duration of 4 days. Two of the three plasma
contactors are installed on the end masses of the SEDS
tether. One is attached to the platform itself. The
primary power requirement for the payload is 28 volt DC,
10 kW at VLF. Use will be made of the Delta-II
telemetry channels available to payloads. This use,
however, will be very limited because the scientific data
from our experiment are collected and recorded by the
receiving stations on the Earth surface, and not onboard
the platform.

The receiving terminals that were used during the
flight of TSS-1 could be moved to new sites that are
suitable for the SEDS-1 mission of March 1993.

5.3  Orbital Flight Parameters

The parameters for the orbital flight of the
proposed electrodynamic/electromagnetic tether experi-
ment could be taken to be similar to the parameters of
the first SEDS/Delta-II flight (DeLoach et al., 1990),
presently scheduled for March 1993, devoted to the
measurement of the dynamic properties of the SEDS
tether.

We estimate that by adding 260 Ib of Silver-Zinc
batteries (this figure is already included in the total mass
of 790 1b) to the Delta’s second stage, the mission can last
as long as 4 days. The orbital decay will be approxi-
mately 2.5 km/orbit during electrodynamic operations.

33-9

A nominal inclination of 37° and an orbital altitude
greater than 400 km with a circular or a low eccentricity
orbit are acceptable. The prior knowledge of the orbital
parameters is a particularly important factor in our case
because we must establish the location of the receiving
sites on the Earth surface as a function of the orbital
parameters. We must make sure that the orbiting
system flies as close as possible over each receiving site.
In later flights, we could relax this specification and
explore signal detectability at substantial distances from
the ground track. For the first electrody-
namic/electromagnetic mission, however, the receiving
stations should be strictly located along the ground track.

54 Ground-Based Data Collection

Several instrumented sites at various locations on
the Earth surface will be used for data collection and
recording, equipped with the same instrumentation that
has been deveioped for the TSS-1 electrodynamic mission.
The existing instrumentation is mobile and can be
relocated at sites that are on the ground track of the
proposed SEDNS “Delta-II mission. This instrumentation
consists of the following equipment:

(a) Receiving /recording system developed for TSS-1
by Rice University under a subcontract from
Smithsonian Astrophysical Observatory. This in-
strumentation, complete with data recorders, uses
the following sensors:

- One set of 3-axis magnetic field sensor BF-4 (a coil
magnetometer) for the band 0.3 Hz to 500 Hz;

- Two sets of 3-axis magnetic field sensor BF-6 (also
a coil magnetometer) for the band 100 Hz to 100
kHz.

(b)  Receiving/recording system developed for TSS-1
by University of Genova, Italy, using sensors that
were loaned to University of Genova by US Navy,
NUWC, New London, CT (NUWC sensors are
encapsulated in Bentos glass spheres suitable for
underwater deployment). The sensors are:

- Two sets of 3-axis induction coil magnetometer for
the band 0.01 Hz to 100 Hz (Gritzke and Johnson,
1982);

cesium

- One set of Varian, optically pumped,

vapour magnetometer.

Another magnetometer has been added to the
sensors that the University of Genova has borrowed from
the US Navy: a SQUID, multi-axis system that was
procured for the TSS-1 flight.

Given the planned orbital parameters, the schedule
of data collection at each of the ground-based sites can be
easily formulated with all necessary time accuracy. The
number of channels that will be recorded at each site are
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a function of the number of sensors and of the number of
axial components for each sensor. In addition, a channel
will be devoted to station’s identification and time infor-
mation consisting of Epoch and of 1-second time marks.
Pertinent telemetry data from SEDS/Delta-II will be
collected, processed, and formatted by the on-board
computer (Rupp, 1988). These data will then be trans-
mitted to the ground-based telemetry stations assigned to
the flight, via the Second Stage telemetry link.

6. OPERATIONAL USES OF THE ORBITING TER-
MINAL FOR TACTICAL AND STRATEGIC COM-
MUNICATIONS TO SUBMERGED SUBMARINES

The orbital emplacement of the transmitting ter-
minal brings with it the potentiality of covering, world-
wide, all ocean areas, inclusive of the polar caps, should
the orbit have a high-inclination. The waiting time,
however, to have available the satellite, for any given
location (should a single satellite be in orbit, with its
transmitting terminal), would be too long. A constella-
tion of several satellites would make it possible to cover,
at any one time, a large portion of the Earth surface.

Figure 6.1 shows that less than ten satellites might
be sufficient. A lot depends on the extent of the radius
of the illuminated area, that is a quantity not reliably
known from theory, and for which the final word will
come from an experiment, such as the one illustrated in
Section 5. Figure 6.1 shows that, assuming this radius to
be somewhere between 3,500 km and 5,000 km, the
required number of satellites would range between five
and ten, to assure 80% coverage of the Earth surface.

With the constellation in place, assuming that
transmissions take place at VLF, the system could be
used to transmit EAM (Emergency Action Messages) to
submerged submarines. The strategic communications
link thus provided, would be a complement to
“TACAMO,” and would be characterized by a greatly
enhanced geographical coverage. Should the ELF capabil-
ity, then, be added to the satellite, the link would
substantially augment the capabilities of the ground-based
ELF facilities presently in use by US Navy.

With the present decrease in emphasis in strategic
communications, due to the deep changes that have
recently occurred in the world’s geopolitical situation,
tactical uses of the spaceborne transmitting terminal
discussed in this paper, may be of greater interest. This
system could be used by a Battle Group (Carrier,
Destroyers, Submarines, etc.), deployed in remote ocean
waters, to enable communications from a surface ship to
a deeply submerged vessel.

7. CONCLUSIONS AND RECOMMENDATIONS

Since the early days of radio, long, thin-wire
antennas have been a fundamental presence in transmis-
sion facilities at LF, VLF and lower frequencies. The
orbiting tethers represent the latest addition to this family
of long line radiators. It seems natural to perceive the
spaceborne tethers as potentially useful to fulfill commu-
nication= requirements that are world-wide in character,
such as the strategic and tactical communications require-
ments of US Navy.

These authors hold the view that, notwithstanding
the lack of pressing motivations to add, at this time, new
operational systems to the communications arsenal, R&D
activity on this and similar advanced subjects, should be
vigorously pursued.

- Especially in cases such as ours, in which a fully
probative experiment on an entirely novel technological
development can be performed at low cost, it is advisable
to proceed with it, learn to the fullest what the new
technology’s capabilities are, and identify unrecognized
potentials, possibly leading to even broader and un-
foreseen applications for this technology.
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ABSTRACT

This paper describes a spaceborne array of two long "Travelling Wave" antennas each tethered to a
spacecraft. The system orbits the Earth above the ionosphere with an angular separation, thus forming a
"V*". Gravity gradient forces keep the long tethers taut and aligned along the vertical. The Small Expendable
Deployer System can be used to deploy and control the tethers. Such an array is proposed for
radioastronomical observations in the 1-30 MHz frequency range. The tether V-shaped antenna provides a
higher directivity and gain as compared to regular long dipoles, yiclding valuable data on the low frequency
spectrum characteristics of extragalactic sources, pulsars, supemova remnants and interstellar medium.

INTRODUCTION

Ground-based radio astronomy in the 1-30 Mhz range is difficult if not impossible due to the ionospheric
refraction. In the 60's NASA developed and launched the Radio Astronomy Explorers (RAE-1 and RAE- 2)
to perform such observations from space. Unfortunately, not all the scientific objectives were met due to
problems in deploying the long antennas, the Earth radio noise at low frequencies, etc.. Nevertheless some
data were of importance and RAE paved the way to future mission in spacebome radio astronomy.

Tether tecnology could be the key to these future missions and the Small Expendable Deployer System
(SEDS) /1/ offers a simple and inexpensive way to deploy long tethers in space.In the following, an array
of two long tethers to be used as Travelling Wave (TW) antennas will be presented.

Long tethers are very stable by aligning themselves along the local vertical while the spacecraft orbits the
Earth. The basic advantage in using a TW antenna over a long-wire multiwavelength electric dipole is that
the former is non-resonant. TW antennas have hi gh directivity and the frequency band can be made very
broad, extending from a fraction of one Hertz up to the upper limit (30 MHz) of the HF band. Another
consequence is that the TW antenna is characterized by higher directivity and gain than the resonant dipole.
However, the TW antennag, like a resonant dipole is still characterized by a radiation pattern that has a null in
the direction of the axis. In most applications this is not a desirable feature. By arranging the antennas in
arrays it is possible to produce a pattern with the wanted characteristics. The simplest of all possible array
configurations is the "V antenna,” consisting of a pair of TW antennas originating from the same point, and
angularly separated /2/,/3/. The V antenna's pattern has a maximum along the bisector of the separation
angle. This simple array, often in a double-V configuration, has found extensive use in the communications
practice on the Earth surface, especially in short-wave communications (frequency range 3 MHz to 30
"MHz).

High resolution observations in the 1-30 MHz frequency range could address some imprtant scientific

issues such as /4/:
- Study of the properties of radio sources at low frequencies



- Study of physical processes in astrophysical plasrnés

- Study of interstellar gas and its distribution

- Study of low energy cosmic rays

- Study of pulsars with flux densities increasing at low frequency
- Study of "old" electrons for fossil remnants of galaxies

THE TRAVELLING WAVE ANTENNA

A long metal wire in Earth orbit aligned along the local vertical /5/, can naturally function as a long, thin-
wire antenna for transmission and reception of electromagnetic waves. An antenna that is well suited to
long spacebormne tethers is the ' ‘Travelling Wave" (TW) antenna. A TW antenna requires grounding at both
ends and must be terminated with a resistance equal to the characteristic impedance of the equivalent
transmission line. Such a termination prevents a standing wave (with sinusoidal distribution of maxima and
minima) to establish itself along the antenna wire. The standing wave is due 10 the superimposition of a
wave propagating along the wire in one direction, and of a reflected wave moving along the wire in the
opposite direction. If the antenna is properly terminated, there is no reflected wave, hence a standing wave
is absent.

In space the TW antenna can be grounded by connecting each end to an open-ended % 3 lambda straight wire

(ag lambda "stub”). The stub is equivalent 10 a section of transmission line that is an open-circuit at its free

end, and that appears as a short circuit at the point where the stub is attached to the TW antenna, hence the
“grounding.” The antenna current, if there are no losses in the wire, is constant along the wire.

Ronold W.P. King, Harvard University, has suggested an interesting alternative /6/: the wire of the TW
antenna can be made of resistive material, and the current that flows in the wire can be made of an
exponentially decreasing intensity. Should this intensity be made equal to zero at the end of the TW
antenna, there is no need any longer of any grounding at that end, because no current would flow to the
ground (grounding at the other end of the tether is still required). One of the merits of King's suggestion is
that the elimination of the %lambda stub (that is a resonant element) keeps fully broadbanded the TW

antenna. An example of pattern in free-space conditions is shown in figure 1. The tether is assumed to be 5
km long and the antenna frequency is 1 Mhz. Figure 1 shows that a TW antenna in free space conditions
has a null along the axis of the wire. Its main lobe is "cave" and the cross section of the lobe is an annulus,
at variance with the gircular cross section that normally characterizes the lobe of a high-directivity antenna.
This undesirable feature can be corrected by using in orbit several TW antennas, and by combining their
outputs. A two-element array, the "V-antenna”, produces by coherent summation, a beam with the main
lobe that is filled rather than cave. The angle B of the maximum radiation measured from the axis of the wire
is a function of the ratio /A, where / is the tether length and A the wavelength (see Table 1). The maximum

gain is achieved when the angular separation o between the two arms of the V antenna is equal to 2f as
shown in figure 2. The pattern is referred to a V-antenna with ams S km long and with an angular

separation o equal t0 24.6°.
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Fig. 1. Radiation pattem of a single Travelling Wave Antenna 5 km long at 1 MHz (/A = 16.6)
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Table 1, Angle B of Maximum Radiation as a Function of /A for two frcqucni:ies for a Travelling

Wave Antenna

TETHER I\ B I p

LENGTH (Km) (1 MHz) © (30 MHz] ©
5 16.67 12.3 500 2.25
10 33.33 8.66 1000 1.65
20 66.67 6.06 2000 1.06
50 166.67 3.86 5000 0.7

THE SMALL EXPENDABLE DEPLOYER SYSTEM

The Small Expendable Deployer System (SEDS) was developed by the Energy Science
Laboratories, and at the present by Tether Applications, under the sponsorship of NASA/Marshall
Space Flight Center. SEDS does not retrieve the payload and consequently it has a very simple
design. The first SEDS flight is scheduled in March 1993. An instrumented box will be deployed
with a 20 km long tether from the second stage of a Delta IT /1/.

SEDS consists of a canister where the tether is spooled, a brake system, a turm counter, a
tensiometer and a computer. With reference to figure 3, the tether goes through the exit guide of the
canister, passes thorugh the brake, the tensiometer and a guillotine and then to the end-mass. In the
first flight the brake will be activated by the stepper motor at about 19 km bringing the payload to a
smooth stop.When the payload reaches the vertical the tether is severed and reenters into the
atmosphere. SEDS mass characteristics are given in table 2.

Fig. 3. SEDS Hardware



Table 2. SEDS mass and size (first mission)

Mass(kg) Size (cm)
Deployer canister 3 25X 33
Tether (Spectra) 7 20 km X 0.75mm
Brake/Cutter 1 8X8X 20
Electronics 2 8X 13X 25
End-mass 25 20X 30X 40
Brakets/Clamps 4
Total 42

SYSTEM DESCRIPTION

The system consists of two spacecraft . Since the pattern is function of the ratio /A, the tether
length and the angular separation between the two spacecraft must be chosen in such a way as to
keep the antenna system capable of providing the wanted dircctivity in the frequency band of
interest. In our preliminary study, the orbital height of the system is 10,000 Km, the 50-km long
tethers are made of Spectra with an aluminum or copper core and are 50 km long. The two
spacecraft are separated by a geocentric angle of 2°. The patterns of the V-antenna are shown in
figure 4, 5, and 6 for 3, 15 and 25 MHz, respectively. The antenna characteristics are given in table
3.

Table 3, V-Antenna characteristics

f (MHz) I HPBW (°)
3 500 6
10 1667 0.7
25 4167 0.5

0 20 40 60 80 100

Fig. 4. Radiation pattem (E-plane) of a V-Travelling Wave Antenna with arms 50 Km long and an
angular separation of 2° at 3 MHz
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Fig. 5. Radiation pattem (E-plane) of a V-Travelling Wave Antenna with arms 50 Km long and an
angular separation of 2° at 10 MHz
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Fig. 6. Radiation pattem (E-plane) of a V-Travelling Wave Antenna with arms 50 Km long and an
angular separation of 2° at 25 MHz



The two antennas orbit along coplanar orbits and are separated, ideally, by a constant geocentric
angle A@. The angular separation must be maintained within 10% in order to avoid degradation of
the resultant radiation pattem (i.e. the combination of the two antennas’ patterns). Alternatively, a
differential attitude motion between the two antennas greater than 10% of the separation angle will
produce a degradation of the resultant radiation pattern.

At an altitude of 10,000 km above the Eanth's surface, the aerodynamic drag is negligible. The
major perturbations to the relative position of the antennas, and hence to the relative angular
separation, are from differential forces due to: Sun's and Moon's gravity; Earth's J» gravity
component; solar pressure.

Likewise, the major disturbances to the relative attitude of the antennas are from differential torques
due t0: Earth's J; and solar pressure.

- Earth's J7 Differential Effects -

Differential Forces
The differential force acting on the antennas separated by a geocentric angle A9 is obtained from the

J2 perturbing potential. The radial (R), in-flight (8), and lateral (L) components of the differential

force are
SR = %A sin? i sin(26) A@
&g =- Asin2 i cos(20) AB ¢)

ofL =- -zl-A sin(2i) cos@ A8

where A = 3], Re2/4, i s the orbital inclination, KE and R the gravitational constant and the
equatorial radius of the Earth, and 0 the argument of longitude of the antenna closer to the equator.
The differential precession of the two antennas is then as follows:

dQ off_ sin®
@ =V sin il @
which leads to:
A .
P Zm)oz sin(26) cos i A9 3

The integral of eqn (3) is null over any number of half orbits implying that no secular effect is
produced by this differential force component. The integral of egn (3) reaches a maximum value
over a quarter of an orbit. The maximum error of the separation angle is, therefore, as follows:

A
At an altitude of 10,000 km, the maximum angular error is 0.002% .

E= (Q = %Jz REM2 cosi @
2

Differential Torques
~ From eqn (1.1), the J2 torque with respect to the center of mass of a dumbbell antenna (the tether

mass has been neglected) is



Rg \2 Y :
Ty, = 61 ag? (;;) 12mp sinZi sin(26) ®)
where r.. is the geocentric distance of the antenna's center of mass (cmy), / the antenna's length,

and Mmp = m]*m2/myo; the reduced mass of the two tip-masses of the antenna m1 and mJ.

The maximum differential attitude occurs when the antennas are on opposite sides of the equator,
i.e. 8 = nn/2 with n an integer. Then the differential torque is

Rp \2
E wy

81‘12 =6J, 0g? (E) 12 mg sini A 6)
After equating eqn (6) to the gravity gradicnt restoring torque for small attitude angles f,
TGG = 3mg w22 B ‘ v)
the relative maximum attitude error is

Rg |2
£=2J, (r—E) sin? ®

an

At an altitude of 10,000 km, the maximum attitude errors for polar orbits are 0.03% .

- Third-body Differential Effects -

The third-body perturbation force, obtained from the third-body effective potential, is as follows:

- M (hpp et r

f= - o ®
i m I

where the subscript I11 is referred to either the Sun or the Moon. rijj and r are the vector radii from

the Earth to the third body and to the antennas respectively, and ?” 1 is the unit vector.

The components of the differential force on the two antennas are obtained by transforming egn (5)

to the orbiting reference frame R6L, taking the partial derivative with respect to 8, and assuming

that the third body has zero declination. Hence

Kimor . ,
6fR=-3 - 2 20 20) cos(2a)]AB
R o [sin(2c) cos(20) + sin(26) cos(2a))

Hmoror . .
6fg =-3 P o 2 28) - cos(2 26))46 10
6 o2 i cos i [sin(2a) sin(26) .cos( o) cos(28)] (10)

o or .
ofL=-3 EZGI- sin i [sin(2a) sin(26) - cos(2a) cos(26)]A0

where a is the right ascension of the third body.
Egn (2), then, yields the differential precession between the two antennas. Here again there is no

secular effect and the maximum angular error occurs over one quarter of an orbit as follows:

£ {Qjm = (mf [2 sin(2a) + cos(2a)) an
AD 0N

where o)mz = ’*III/’III3 and @y, is the orbital rate of the antenns.

The maximum angular error occurs for a third-body right ascension of 40 deg and 140 deg. The
crrors are 0.0003% due to the Moon and 0.0001% due to the Sun for an orbital altitude of 10,000
km.



- Solar Pressure Differential Effects -

Torques .

At high altitudes the solar pressure torque may be relatively significant with respect to other external
torques. For the travelling wave antenna, the tether and the solar panels provide independent torque
components as indicated in the following formula that gives the attitude misalignment with respect
to the local vertical

8= —C [ASP Ksp/(/mj) + r KT sinymp) (12)

3m02

where MF is the solar momentum flux equal 10 4.4x10°6 N/m2, Asp the area of the solar panels
perpendicular to solar rays, rand / the radius and length of the tether, ¥ the solar view angle of the
tether, Ksp and KT the reflectances of the solar panels and the tether respectively, and mp =
mi1 m2/(m2 -m1). If m3 < mj the tether torque contribution (second term in square brackets) has
a sign opposite to the solar panels contribution. The two contributions depend upon system
geometry, values of KSp and KT, and power requirement. It is possible, however, to have a zero
total torque with realistic and appropriate values of the system parameters.

In a more general situation, an upper bound of the solar radiation torque can be obtained by
neglecting the tether contribution and by assuming typical values of system parameters as follows: 1
kW of power delivered by the solar panel with an efficiency of 10%, Y= 90 deg, Ksp=1.5,r=1

mm, [ =10 km. At an altitude of 10,000 km, the attitude misalignment is 66 = 0.002 deg. A
relative attitude error equal to this misalignment value can be reached across the terminator with one
antenna in the light and the other in the shade.

CONCLUSIONS

The possibility of performing high resolution observations from orbit of radioastronomical sources
in the band 1-30 MHz, can be greatly enhanced by the advent of spaceborne tethers.

There is now a substantial larger flexibility in configuring a radioastronomical observatory in Earth
orbit, where tethers can be used as structural ele'mcms to provide support to a large array of dipoles.
The requirement of simplicity will be, however, the prevailing criterion, and we would expect that,
in the conceivable future, the dual-platform V-antenna discussed in this paper will be considered for
implementation
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7.0 PROPAGATION OF ELF WAVES INTO THE IONOSPHERE

The research conducted on this topic focused on the development of a method for the
numerical calculation of the electromagnetic wave field on the Earth's surface associated
with the operation of an electrodynamic tethered satellite system of constant or slowly
varying current orbiting in the ionosphere. One of the experiment of the TSS-1 mission
calls for the detection on the Earth's surface of the electromagnetic waves emitted from
TSS. The development of this numerical model is therefore instrumental for evaluating the

strength of the signal on the ground.
The following paper summuarizes the results of the investigation mentioned above.

See also Quarterly Reports No. 18, No. 19, and No. 20 of this contract for more

details.
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CALCULATING THE ELECTROMAGNETIC FIELD ON THE EARTH DUE TO

AN ELECTRODYNAMIC TETHERED SYSTEM IN THE IONOSPHERE

Robert D. Estes
Harvard-Smithsonian Center for Astrophysics
Cambridge, MA 02138

Abstract

This paper outlines a method for numeri-
cal calculation of the electromagnetic wave fleld
on the Earth's surface associated with the
operation of an electrodynamic tethered satellite
system of constant or slowly varying current high
in the ionosphere. The model used allows for ar-
bitrary angles between the geomagnetic field
lines and the horizontal plane and for vertical
variations in plasma density, ion species, and
fon-neutral collision frequency. The shear Alfvén
wave-packet generated by an electrodynamic
tether in an infinite, uniform magnetoplasma is
taken as the incident wave. The functional
forms of the Fourier components of the incident
and reflected shear Alfvén waves and the up-
wardly decreasing evanescent compressional
Alfvén solution are known in the upper ifono-
sphere. The form of the solution in the at-
mospheric cavity is easily obtained. This knowl-
edge enables us, in principle. to obtain the wave
field at the ionospheric boundary and, hence, on
the Earth's surface by numerical integration.
Preliminary conclusions based on general
principles are that the fonospheric waves do not
propagate into the atmosphere and that the {m-
age of the Alfvén “wings™ from a steady-current
tether should be greatly broadened on the
Earth's surface and will probably be too weak to
detect, even for high current values.

Introduction

The problem of electromagnetic wave
generation by an electrodynamic tethered satel-
lite system is important both for the ordinary
operation of such systems and for their possible
application as orbiting transmitters. The
tether's ionospheric “circuit closure” problem is
closely linked with the propagation of charge-
carrying electromagnetic wave packets away
from the tethered system.

Previous analyses of the waves generated by
large conductors moving through a magne-
toplasmal-6 (in our case a tethered system mov-
ing through the jonosphere} have considered the

This paper is declared a work of the U.S. Govern-
ment and is not subject to copyright protection in
the United States.
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conductor to be immersed in an infinite plasma
medium. When the boundary with the atmo-
sphere s far enough away, this serves as a useful
approximation for calculating the fonospheric
waves and estimating their contribution to the
tethered system's electrical impedance: but it
tells us nothing about the electromagnetic signal
we should expect to be associated with the teth-
ered system In the atmosphere or on the Earth's
surface.

Heretofore there has not been a systematic
treatment of the wave reflections and other ef-
fects of nonuniformities in the plasma medium.
The inclusion of ion-neutral collisions introduces
the possibility of coupling to the fast magne-
tosonic (compressional Alfvén) wave modes. The
work reported here represents a step towards a
solution to the problem that takes into account
the effects of boundaries and of vertical varia-
tions in plasma density. collision frequencies,
and fon species.

neralization of Pr

As a first step, we generalize our previous
results on steady-current tethers to the case
where the geomagnetic fleld makes an arbitrary
angle with the horizontal plane, in which the
tethered system moves (See Figure 1).

Motion of sytem (and x-axis) in out-of-page direction.
Tether along y “axis

Figure 1. Tether in non-horizontal magnetic field
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This would approximately correspond to a
system at {ts maximum excursfon in latitude for
a non-equatorial orbit. Having previously
demonstrated the equivalence of an orbiting
“ribbon” current distribution and the idealized
dumbbell tether current distribution used in the
earlier analysis6, we can conveniently define the
tether current distribution as

e ue w2,

[#(s-L)- (y+ &)

where x2'=x-v,t and y’ lies along the vertical
with y'=0 at the middle of the tether. The y-
axis, which is orthogonal to B (the z axdis} is
also indicated in Figure 1. H(x) is the Heaviside
function defined by

H(x)=1,x20
H(x)=0,x <0

(2)

and I, L, and L, are the tether current, tether
length, and system dimension in the line-of-
flight direction, respectively.

We now need k. j, . whereJj, is the

Fourier transform of the tether current density.
This is most conveniently calculated in the (x, y°,
z’) co-ordinate system, where

k-j, = k’, Ja.y (3)
It is easy to obtain
ke Ly ( k L)
. 2! “"( 2 )‘"‘ 2
J‘.y'- 6(‘0— kxvx) R L ky

The Fourier transform of the plasma current
along the field lines is

P 3
J,=2~—k k-E

= ino . (5)

R - BRI LA T S
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and

(6)

where € 1s the diagonal component of the cold

plasma dielectric tensor perpendicular to the
magnetic fleld® and Gaussian units are used. The
only difference from the horizontal magnetic
field case is in the argument of the second sin
factor in (4).

When the inverse Fourier integrals of (5)
are carried out, the result is once again field-line
sheet currents at the ends of the system; only
the charge-exchange regions at the ends of the

The

top and bottomn wings are connected by the con-
dition of current continuity but otherwise they
appear to be independent phenomena generated
by the disturbances at their respective ends of
the system. Except for the shift in lines of dis-
continuity in J, to coincide with those traced by
the charge exchange terminals, the Alfvén wing
solutions are the same as before.

Electrodvnamic Tether in a Bounded, Non-Uni-

rm _ion e 1

system are now located at y = i-%cos 0.

The first significant new feature we intro-
duce to the problem {s the presence of bound-
aries: the one between the ionosphere and the
atmosphere and the one between the atmo-
sphere and the Earth. For simplicity, we begin
our analysis with the atmospheric cavity consid-
ered as a vacuum and the Earth as a perfect con-
ductor. For electromagnetic problems the first
approximation is reasonable, and the second
approximation greatly simplifies the boundary
value problem at the Earth. If the ocean surface
is considered, it is justifiable as a first approxi-
mation since its main consequence is a small
horizontal electric fleld component at the sur-
face.

We make the assumption that the tethered
system is sufficiently far from the atmospheric
boundary (or any steep gradients in plasma pa-
rameters) that we need not be concerned with
the boundaries’ effects on the system. That s,
we assume that the infinite-medium solution
previously obtained is a reasonable approxima-
tion to the “incident™ wave-packet generated by
the system operating in the bounded fonosphere.
For now we assume a tethered system high in
the fonosphere above a flat Earth. We first re-



strict ourselves to the steady-state operation of
such a system. We allow only vertical variations
in ionospheric quantities.

The complexity of our problem, even in
the simplified formn stated above, requires a nu-
merical analysis. There are, however, a number
of observations that can be made based on the
fundamental physics of the system under con-
sideration. Our approach follows the general
outlines of the analyses of ifonospheric waves
made by P. Greifinger?, C. and P. Greifinger8, and
Rudenko, et al.8. The particularities of our
moving source require some modifications to the
analysis from the outset, however.

rizontal Plane-Wav mpon

In order to utilize the formalism of the
above-mentioned authors, we seek an incident
wave solution written in terms of plane waves in
the horizontal plane. The amplitudes of these
wave components depends on the vertical co-
ordinate, y'in our notation. A number of
transformations are required to obtain this form
for our incident wave-packet. We must also take
into account the relationship that exists between
the x-component of the wave vector and the fre-
quency (as seen Iin the plasma. i.e. the ter-
restrial, rest frame) for the steady-state opera-
tion of an electrodynamic tethered system:
namely, the Dippler relation w= kv,. At this
initial stage of our analysis we restrict ourselves
to the Alfvén region kw.<< 2, (£, is the jon

cyclotron frequency), which {s consistent with
our consideration of systems in the upper re-
gions of the jonosphere.

Following the reasoning used to derive
expression (4), we obtain the following expres-
sions for the Fourler transformed electric field
components

E, ,= %“%5( w-k,v,)-

1€ (7)

where the 1 subscript refers to components
perpendicular to the magnetic fleld, which les
along the negative z direction®.

°In all that follows we will use the notation lz', =k g

etc. to represent vector components in the primed
system of co-ordinates.
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Thus Maxwell's equations give us

C
B,=-<(k,E, - k,E)=0 (&)

Since E, =0 by assumption, Maxwell's
equations further yield

E., (9)

We now carry out the inverse Fourier integration
over k,. Since we are considering downward
moving waves, which correspond to the negative
z direction i{n our co-ordinate system, we close
the contour of integration in the lower half of
the complex k, plane and pick up the contribu-
tion of the pole at

o
ko=-v (10).
Using

k’y+k,z=k',y'+k',z (11)

and the transformation of variables

[[|dwdk,dk  =sin8 [ [ [dodk,dk’, (12

we obtain
=2, sin@ ,
E, = —"——[ ] [dodk, d¥’, 6(w- k,v,)

{cxp (- i[at -k, x - k" y - k', z])

sn(£572) (:«',L]}

(13)

2 sin 2

k

1

-20y, sin@
= _;‘—:'-j”dmdk,dk', S(w-k,b,)
{cxp(- i[at -k, x-k,y- k',z']) (14)

sin(ka:) kl L ]
2 sin( ’2 kk', cos 6 - k', sin 6)}

Rk,

E




where
I3 w ’
k’-"u“lsine—k'cme (15)
and
2 2 ’ ., 2
ki=Fk, +(k, cos6-k,sin6) (16)
Equations (9) and (10} imply
B, ,=t-E, . (17)
4
y'(verucaUy up)
z
- z. e
k B {in y~z° plane}
x

The hortzontal wave-vector A lies in the x-2° plane. The
* axds s tn the direction of the orbital velocity.

Figure 2. Geometry of the Problem

The horizontal components of the field are
now at hand. The x-component is one horizontal
component. The other horizontal component of
the wave field (the 2z’-component) is easily ob-
tained utilizing E, = B, =0:

E,=-E, sin® (18)

The corresponding expression holds true for the
B field components.

Following the approach of the references

. mentioned earlier (particularly Rudenko, et al),

we now need to obtain the horizontal wave field

components parallel and perpendicular to the

horizontal wave vector.

Figures 2 and 3 show

the co-ordinates to which we refer.
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Y

All vectors Le in the horizontal plane. & is parallel
to the honzontal k vector. ﬂ is chosen to make a right-
handed orthogonal system of (8, y', ﬂ)

- Figure 3 The co-ordinate system delined by the
horizontal wave vector

Note that each horizontal wave vector
(k.. k') defines a different co-ordinate system
(6. B). This implies that the numerical inte-
gration must be carried out separately for each
(k.. k%) pair. In all that follows the vector k
with no subscript refers to the horizontal wave
vector of magnitude

k=yki+ k)

In the (4, B) system the wave electric
fleld components are

(19)

(20)

(21)

The corresponding expressions hold for the
components of the B fleld.

Having obtained the components of the
incident wave packet, we can consider some of
the general physical characteristics of the sys-
tem. Since the only variations in our model are
in the vertical direction, the dependence of our
incident Alfvén wing wave-packet components
on the horizontal co-ordinates is given every-
where by the horizontal plane wave factor. Thus
each component of the incident wave-packet ar-
rives at the fonospheric boundary with the same



horizontal wave vector that it had high in the
fonosphere. This has important consequences
for the solutions in the atmosphere and on the
Earth.
heri Vi n
The equations for the horizontal electric
field components in the atmospheric cavity are

(22)

where k&, the magnitude of the horizontal wave
vector, has the same value as in the ionosphere.
Simflarly, the frequency is unchanged across the
boundary. The identical equations hold for the
horizontal magnetic field components.

The incident wave components contain the
factor &(w-k,v,), a consequence of the
steady-state operation that we have assumed up

until now. An immediate consequence of this is
2

®
that the factor (? -

equations (22) fis
|k v, ] <lke| atways.
This means that the Alfvén wings gener-
ated by the steady state operation of an electro-
dynamic tethered satellite system will not prop-
agate into the atmospheric cavity. That is, there
is total reflection at the atmosphere's boundary
with the fonosphere. Our solution corresponds
to a surface wave at the jonospheric boundary.
Taking into account the perfect conductor
boundary condition at the Earth's surface, we
obtain the solution in the atmospheric cavity

2
k ) in the second term of

always negative, since

sinh (P (¥~ (¥, - H)))

E sinh(pH )

5. 5= Es. 5( ¥ (23)

cosh (p(¥'-(¥,-H)))

o ,
B y=pcEi(,) sinh(pH)
(24)
ipc ,, Sosh (p(¥'-(y,-H)))
By=-=wE,(,) sinh(p H)

(25)

where
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2 ol
p= /k -

and ¥, and H are the values of y' at the iono-

spheric boundary and the distance of this
boundary from the Earth’s surface, respectively.

Equations (24)-(25) show that the ratio of
the magnetic field on the Earth's surface to that
at the fonospheric boundary is

(26)

Boplv,-H)

-1
; = (cosh( pH
Bﬁ.ﬂ(yb) ( ; ( ))

(27)

The height of the jonosphere may be taken
to be around 100 km. The consequence of
equations (23)-(26) is that the image of the
Alfvén wings on the Earth's surface will be much
wider than the wings are in the jonosphere,
since only the wave-packet components with
horizontal wavelengths of hundreds of kilome-
ters will escape severe attenuation. Since such
long wavelength components make up only a
small fraction of the wavepacket for a reasonably
sized tethered system and since the noise level
is much higher for the lower regions of the ULF
band, we tentatively conclude that the magnetic
field image of the Alfvén wings on the Earth’s
surface will probably be too weak to detect in the
case of a steady-current tether, even one with a
high current.

Hughes and Southwood!0 reached similar
conclusions about the “shielding” of fonospheric
disturbances with short horizontal wavelengths.
These authors emphasized the role of Hall cur-

rents in the lower part of the ionosphere in

reducing the B p component of the ifonospheric

waves; but {t s obvious from the analysis that the
result is a general consequence of Maxwell's
equations that would hold for different models of
the fonospheric conductivity

The Ionospheric Wave-Guide

So far we have not discussed the possible
effects of vertical variations in plasma density
and ionic composition. Since the Alfvén speed
depends directly on these quantities, their vari-
ation changes the effective dielectric constant
of the plasma. This has consequences for the
waves that can propagate in the jonosphere. The
dispersion relation for the anisotropic Alfvén
wave {s approximately

o=k,v, (28)



The dispersion relation for the fast magne-
tosonic (isotropic Alfvén) wave is

2
W= k., v: (29)

where &, is the total wave vector, including

horizontal and vertical components. For a given
horizontal wave-vector, frequency, and Alfvén
speed combination it may be impossible to find a
real vertical wave vector component that satis-
fies the dispersion relation (29).

In this case the fast magnetosonic mode is
evanescent. This is the case for the steady-cur-
rent electrodynamic tether, which excites waves
satisfying (28). but by virtue of the w=4,v,
condition cannot satisfy (29) for any real vertical
wave vector component. The fast magnetosonic
mode has thus been discarded {n our
calculations of the Alfvén wings.

We have seen that for a given horizontal k
vector and frequency o, the isotropic wave will
propagate or not depending on the Alfvén speed.
The Alfvén speed has a minimum value in the F-
region of the ionosphere, so an isotropic wave
can be confined to the region around this mini-
mum—the jonospheric wave guide. Figure 4. il-
Justrates the ionospheric wave-guide. The
Greifinger and Rudenko references?-8 discuss
the ionospheric wave-guide and note the occur-
rence of wave-guide resonances. Rudenko, et
al® make the point that an Alfvén wave, incident
from high in the fonosphere, couples to the fast
magnetosonic wave within the jonospheric wave-
guide region for the particular frequency and
wave-vector combination.

The fonospheric wave-guide traps elec-
tromagnetic energy in a horizontal layer of the
fonosphere. Stimulating resonances of the fono-
spheric wave-guide with an electrodynamic
tether would seem to be a possible way of over-
coming the difficulties in obtaining a measur-
able signal on the Earth’s surface.

It is easy to see that no steady-current
electrodynamic tethered system can achieve this
in the Earth’'s ionosphere, however. Since an
orbiting steady-current tether cannot stimulate
propagating fast magnetosonic waves even in the
region of minimum Alfvén speed, it is impos-
sible for Alfvén waves generated by a steady-
current tether anywhere in the fonosphere to
excite propagating fast magnetosonic waves.
There is no fonospheric wave-guide for steady-
current tethers.

The next phase of our research into the
problem of tether-generated electromagnetic
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waves will focus on the fonospheric wave-guide
and its possible excitation by electrodynamic
tethered satellite systems with time-varying
currents. In the next section we map out the
method we plan to use in our numerical investi-
gation of this question.

[ a5 3555555577

ionospheric waveguide:k v
N A
Atmosphere (vacuum)
conducting Earth

Figure 4. The lonospheric waveguide

Wav

Our method applies to systems that di-
rectly excite only shear Alfvén waves. We would
expect the method to have its greatest utility in
the case of slowly-varying tether currents with
frequency components such that coupling to
fonospheric wave-guide modes occurs.

1t should be noted that we are talking only
about variations in the tether current sufficiently
slow that the tether current distribution can still
be considered as independent of the vertical co-
ordinate along the tether's length. The tether is
not functioning as an antenna in the normal
sense of the word in this case; it is still a source
of varying current to the ionospheric transmis-
sion line, a concept that we have emphasized in
our previous analysis.

Slowly Varying Current

We assume a tether current distribution
that is just expression (1) multiplied by cos(w,t).
where «, is the oscillation frequency of the
tether current. Let us suppose that the tethered
system is equipped with a suitable power supply
to enable it to reverse the current. Any time
variation can be broken into its Fourier compo-
nents, so the choice is not restrictive, except
that we are explicitly excluding spatial variations
in the tether current along its length, which tm-
plicitly limits the range of frequencies we can
consider.

Expressions (13) and (14)., which deflne
the incident wave packet, are modified only by
the replacement of the delta function

o- k:”x)b}'



(5(&)4‘ o, = k,l),)*' 6(0)- Wy = k:vx))
! (30)

Ionospheric Model and E

Having derived the incident Alfvén wave-
packet in the desired form. we now turn our
attention to the numerical methods we propose
to use for solving the problem. We are following
the method outlined in Rudenko, et al.®
However, our notation differs in some respects
from that used in the Rudenko reference. In
addition there are a few serious typographical
errors in that paper. For these reasons, we will
outline the method here.

Maxwell's equations for the horizontal
wave field components in the fonosphere can be
written in the following compact way :

.d F

-I'F=GF

{31)

where we define F as the four-component vec-
tor

F =(E. E, H, H,) (32)

with the third and fourth components given by

H&"'"(VOCE)B‘;

Hp = (vocB)Ba

(33)

(34)

For our numerical work we use dimen-
sionless quantities. The dimensionless fre-
quency is defined by

L
©=% (35)

where A is a scaling length and v, is the Alfvén

speed in the region in which the wave-packets
originate. The variable 3 is just the vertical

spatial co-ordinate in units of A.
The 2X2 submatrices

2 [k' E cos 0]
H
E sme
p,k' k, cot 9 T
+ sinf

<'~|8'

ISI

<|
~
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<l |e|

|e

( - k,cote - E,cote)

B, = 0 0 (37)
10
E2%10 1 (38)
_ ‘E,COte 0 {(39)
LUl E_cot® 0
define the the 4X4 matrix
g, B,
¢ -[ By B, ] (40)
In the expressions above, k, and k, refer

to the dimensionless horizontal wave-vector

components defined by the scaling factor 2.
The normalized Alfvén speed U is defined by
%a
Uy -

The quantities

(41)

5]

M= i(‘g’iuii‘;];ﬁ

ci

and

(42)

along with the Alfvén speed, express the dielec-
tric properties of the ionospheric medium.
Here v; and £, are the fon-neutral collision
frequency and the ion cyclotron frequency, re-
spectively. The Alfvén speed. v; , and £ all
vary with altitude in our model.

For the frequency range and horizontal
wave-vectors to which we are limiting our analy-
sis, there are four well-defined independent so-
lutions to equation (31) in the upper fonosphere:
two shear Alfvén solutions, corresponding to
positive and negative vertical wave-vector com-
ponents, and two isotropic Alfvén solutions, one
that grows exponentially with increasing y’ and
another that falls off exponentially with y'.

[p,k' k, cot 9 Hy ]
2 2 ~ “siné
2; 2 {(36)
’p[[-i,cosza] Ez
. Ezsinzﬁ



The shear Alfvén solution with negative
vertical wave-vector component corresponds to
the incident wave, whose components we have
calculated. The upward traveling shear Alfvén
solution then corresponds to a reflected wave.
Of the two isotropic solutions, only the upwardly
decreasing one makes physical sense. It corre-
sponds to leakage of the ducted fast magne-
tosonic wave from the ionospheric wave-guide.
Thus we are left with three physically meanfng-
ful solutions to equation (31) at “infinity" (the
location of our tethered system, high in the
fonosphere).

While we know the amplitude of the inci-
dent wave-packet solution at infinity, the ampli-
tudes of the other two solutions are unknown. It
turns out that knowledge of the functional form
of these solutions at infinity. combined with the
boundary conditions at the fonosphere/atmo-
sphere interface and the functional form of the
solutions in the atmospheric cavity, determines
the solution at the fonospheric boundary and.
hence. on the Earth’s surface.

The Admittance Matrices

Let us now sketch the means by which this
can be accomplished. First we introduce the
admittance matrices. which are variations of
those defined by Budden!!. We define the ad-

() PR
mittance matrix A (@, k, 3)as the 2x2 ma-
trix that satisfies the equation

](43)

(

where F' and FJ are two solutions of (31) and
a and P are two arbitrary complex constants.
The admittance matrix transforms a linear
combination of the electric fleld components of
the two Independent solutions into the same
linear combination of the corresponding
magnetic fleld components, as defined by equa-
tions (32)-(34).

It is straightforward to obtain from (31)
and (43) the following differential equation for
an admittance matrix A defined as in (43) :

i J
iJ),— aF
]=A( J)(‘”' k, 7')[ 1"*&71

J
oF, + fF,

i J
oF, + fF,
i J
oF, + fF,

(44)
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where the g; are the matrices defined in (36)-
(39).

The admittance matrices contain the ratios
of electromagnetic field components rather than
their absolute values. This has an important
advantage for numerical integrations down
through the jonosphere, since it avoids the
problem of numerical swamping brought on by
the exponential growth of an initially small mix
of the downward growing solution.

Since we know the functional form of the
solutions at infinity, we can construct the ad-
mittance matrices at infinity in the following

X; XJJ Xli XlJ
X, x| x, X

where the X" are the known functional forms

of the F' solutions at infinity. These can then
be taken as the initial values for numerical inte-
gration down to the boundary with the atmo-
sphere.

Ab, the boundary matrix at the atmo-
sphere/ionosphere boundary is defined by

(i) 1

where the F corresponds to the total solution at
the boundary, including the contributions from
the reflected and ducted waves, as well as the
incident wave.

For the case of a perfectly conducting
Earth this corresponds to

F(5,)

"5

(46)

o
Ab= i}.coth(pH)[ [czp) (47)
0o =-p
1 n I heri n

The solution at the boundary may be writ-
ten as

F(3,)= BF'(3,)+ B,F(7,)+ B,F(7,) (48)



where F' and F2 denote the reflected and in-
cident shear Alfvén solutions, respectively, and
F’ denotes the ducted wave solution, with the
B; complex constants. The coefficient B, is
known from the incident shear Alfvén solution at
infinity.

An obvious consequence of the definition
of the admittance matrices (43) is that

J
i), = F
£7)-4""GE )| Y |sous
2

(A(".J') 5.

for izk.

We can utilize expressions (43), (46), (48).
and (49) to obtain the following equation, which
{s true on the boundary between the fonosphere
and the atmosphere:

(a*@.B) - A" (5. K. y;))( 2 J= (50)

2

N, 3y F
(A(z ”(w, E‘y'b) _ A(l 3)(‘0' 5-5',,))32 Flﬂ)
2

This expression., which relates the electric
field components of the total solution (48) on
the boundary to the electric field components of
the incident wave solution on the boundary by
means of the admittance and boundary matrices,
is the basis for our numerical method. We invert
the matrix (Ab(t_t).ﬁ) -A“'”(E. E..?,,)) on the
left hand side of (50) to obtain the electric fleld
components on the boundary. Then the
boundary matrix Ab yields the magnetic fleld
components on the boundary. The atmospheric
cavity solution (24)-(25) yields the magnetic
field on the Earth's surface and anywhere in the
atmosphere. The required admittance matrices
and the incident wave solution on the boundary
are to be obtained by means of numerical inte-
gration of the equations (44) and (31).

All of the analysis outlined in the preced-
ing paragraphs must be carried out for each
horizontal wave vector component. The com-
plete solution on the Earth’s surface is obtained
by summing over all these solutions to obtain the
inverse Fourier transform. We have begun soft-
ware development to carry out the program of
numerical analysis.
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8.0 REENTRY OF TETHERED CAPSULES

A vertical or alternatively a swinging tether can provide the initial AV to force the
reentry of a capsule attached at the tip of a downward tether. Once the tether is cut, the
capsule can reenter with the long tether attached to it. Upon entering the dense atmosphere,
the tether drags the capsule by decelerating the reentry at high altitudes and, consequently,
strongly reducing the maximum temperature experienced by the capsule. For this effect to
be fully exploited, the tether must be made of heat-resistant materials such as graphite,

silicon carbide, boron carbide or similar.

The small satellite of SEDS-I reentered with the tether attached to it and its tensiometer
(load cells to be more precise) clearly shows the beginning of an exponentially increasing
deceleration provided by the tether before the telemetry link was lost. In the case of
SEDS-I, the tether was Spectra-1000 with a very low melting temperature of 140 °C.
Consequently, the tether burnt at an altitude somewhat lower than 105 km, i.e., without

slowing down the satellite during the most critical phase of reentry.

Conversely, a heat-resistant tether could reduce the maximum temperature of the
capsule during reentry from 2700 K to less than 500 K. The maximum temperature of the
tether would be about 1000 K which is well below the melting temperatures of the
candidate materials mentioned above (e.g., several materials suitable for tethers have a

maximum operating temperature well above 1000 K).

A paper is included herewith which highlights the numerical results obtained for the
reentry of a tethered capsule. Moreover, the reentry of SEDS-I is also simulated in order to
estimate the altitude at which the tether and the satellite burn in the upper atmosphere.
Maximum temperatures and reentry trajectories are then computed for the three following
cases: (1) a heat resistant tether attached to the reentry capsule; (2) a low-melting-point

tether (i.e., SEDS-I); and (3) a reentry capsule without tether.

See also Quarterly Reports No. 25 and No. 26 of this contract for more details.
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A HYPERSONIC PARACHUTE FOR LOW-TEMPERATURE
REENTRY

M. Krischke!, E. Lorenzini2 and D. Sabath’
1 Kayser-Threde GmbH Miinchen, Germany

2 Harvard-Smithsonian Center For Astrophysics, USA
3 Technische Universitit Miinchen, Germany

Abstract

Atmospheric reentry, even when initiated from a circular
low Earth orbit, requires heavy heat shields, ablative
materials or radiative dissipation techniques.

Semianalytical and numerical simulations of the atmosphe-
ric reentry from low Earth orbits of a capsule with a 20-km,
attached, heat resistant tether have shown that the thermal
input flux on the capsule is reduced by more than one order
of magnitude with respect to a comparable reentry without
tether.

Long tethers have low ballistic coefficients and a large
surface for heat dissipation. Moreover, a long tether is
stabilized by gravity gradient and consequently tends to
maintain a high angle of attack with respect to the wind
velocity. The exposed surface of a 20-km-long 1-mm
diameter tether is 20 mz, which is much larger than the
cross section of a reentry capsule. The resulting strong drag
decelerates the capsule during reentry like a conceivable
hypersonic parachute would do.

This paper describes the methods and results of the simula-
tion of the SEDS endmass reentry with different tethers.

Introduction

Most of the fundamental work concemning atmospheric
reentry was done in the sixties. Facing projects such as the
Space Station, Singer, and Hermes the research activities in
aerothermodynamics and the interest in atmospheric reentry
missions have been growing over the last years. In several
countries new reentry capsules are under development, e.g.
the American Westar capsule and the German Express and
Mirka capsules.

During atmospheric reentry a part of the vehicles total ener-
gy is dissipated and transfered to the surrounding medium
by two heat transfer mechanismes, convection and radia-
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tion. Typical values for the heat load on a reentering capsu-

le are between 1.3 MW/m? and 4 MW/m2, These heat loads
require a special protection which consitsts in general of a
heavy ablative heatshield and thermal insulation .

The reentry of a spacecraft is usually initiated by firing a re-
tromotor, which decelerates the vehicle down to reentry ve-
locity. Tethers have long been proposed as a means 1o pro-
vide the necessary dV for reentry. They have the advantage
of not polluting the orbit and transferring the angular mo-
mentumfrom the lower to the upper spacevehicle. During
our research on the atmospheric reentry of tethered space-
craft and our simulation of the reentry of the SEDS (Small
Expendable Tether Deployer) endmass a new surprising
application of tethers has been found. A heat resistant tether
which is attached to the reentering body works like a hyper-
sonic parachute. This hypersonic parachute slows down the
vehicle already in very high altitudes and thus lowers the
heat loads during the reentry in the denser atmosphere.
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Fig. 1: The Small Expendable Tether Deployer @

The need for inorbit experimentation and demonstration of
tether technology before flying major missions led to the
development of an inexpensive tethered space system for
carrying out precursor flights, the Small Expendable-Tether



carrying out precursor flights, the Small Expendable-Tether
Deployment System (SEDS (1. Unlike TSS1, SEDS does
not retrieve the payload attached to the end of a 20km-long
thin tether. By avoiding the complex control system
necessary for retrieval, the design of the deployer is
drastically simplified. SEDS flies as a secondary payload on
a Dela II rocket. The Hardware of the SEDS project is
already built, tested, and ready for the flight, which is
scheduled for 1993.

The SEDS System consists of the tether deployer with the
tether and an instrumented endmass. The endmass, which is
connected to the deployer by the tether, is ejected by a
spring-loaded marman clamp. After a period of 1.5 h the
deployment of the 20 km-long tether is completed and the
tether is cut at the deployer end. This operation puts the
endmass and the tether on a reentry ellipse. During the
reentry the tether and the endmass are supposed to burn up
in the upper atmosphere.

In our research we consider also the use of a reentry capsule
and a heat resistant tether in the SEDS configuration.

Modelling

For the simulation of the reentry of a tethered spacecraft
two different models have been used. The first model was
developed within the Harvard Smithsonian Center for
Astrophysics 3 for the simulation of orbital tether dyna-
mics. The original computer code which is called Master20
has been modified to simulate reentry.

The tether dynamics are simulated in three dimensions by
modelling the tether with 7 point masses connected by
massless springs and viscous dashpots. The endmass is re-
presented by an additional pointmass.

Fig. 3: Kinematics of the lumped masses model

The aerodynamic forces are computed on the basis of a ro-

tating US Standard Atmosphere 1976 (4). The gravitational
model is a JO+J2 model. Lifting effects on the tether are not

o)

considered. In addition the tensional forces are provided by
the visco-elastic tether segments that connect two adjacent
lumps. The aerothermodynamic heating is computed by

using the formulas for heat transfer analysis by Lees ©).
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Fig. 3: The density profile of the lumped masses model

In addition to the model described above a much simpler
model was developed to prove the plausability of the nume-
rical simulation with the Master20 software code. The tet-
her is assumed to be rigid and straight with a constant angle
of attack. The endmass is modelled by an attached point
mass.

Fig. 4: Kinematics of the simple model

The aerodynamic forces are computed with a simple expo-
nential density profile.

Simulations

The differential equations of both models are numerically
integrated by using a 4th order Runge-Kutta Integrator. In
addition to these numerical solutions a semianalvtical solu-



tion similar to the ‘second order solution of entry
dynamics’ by W.H.T. Loh ), of (he simple model could be
found.

The comparison of the different solutions showed a very
good agreement. In this paper only the results of the simula-
tion of the lumped masses model are discussed.

The simulations start at the time of the tether cut at an alti-
tude of 700 km. The orbital velocity of the endmass is 7276

m/s.

Solutions of the lumped masses model

We have simulated different reentry cases. One with a heat
resistant tether which is connected to the endmass during
the whole reentry, one with the tether disconnected all the
time or in other words endmass without tether, and one with
a melting tether (>420 K) which is the case in the first
SEDS mission.

The simulations show (see Fig. 5) that the shape of the
tether is very stable up to the region where the endmass
enters the atmosphere. Fig.5 represents a series of snapshots
of the reentry of the tether and the endmass, The snapshots
are taken every 100 s. The distances are with respect to the
Delta’s second stage which rotates around the Earth on the
elliptical orbit. For a better understanding, the altitudes at
the beginning and at the end of the snapshots are shown. In
the figure.
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Fig. 5: Snapshots of a part of the reentry of the endmass and
the tether

In Fig. 6 the seperation of the endmass and the tether when
the ‘tether reaches the melting temperature of 420 K for
spectra is very clear. The system is entering the dense at-
mosphere after about 1850 sec from release.
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Fig. 6: Altitude of first tethersegment and endmass for three
different cases

The velocity profiles of the endmass and the first
tethersegment (Fig. 7) are very interesting. It shows that the
tether decelerates the endmass in a higher altitude which
means that the system enters the denser atmosphere with a
much lower velocity. Since the melting temperature of the
material of the SEDS tether is very low (420 K), the
velocity profile of the case whereby the tether and the
endmass are disconnected when the tether starts to melt is
very similar to the case whereby the tether and the endmass
are disconnected all the time.
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Fig. 7: Velocity profile of endmass and first tethersegment
over the altitude

The plot of the tether tension (Fig. 8) shows that the vibra-
tions following the cut of the tether are damped out after a
while and the tension swings smoothly around the value of
the gravity gradient. When the system enters the atmosphe-
re tension rapidly grows up to an maximum of more than

2000 N.



TETHERTENSIONS (N)

Fig. 8: Tension of tethersegments over the altitude

The heat fluxes on the endmass which are shown in Fig. 9
demonstrate the dramatic change for a reentry with a heat
resistant tether compared to the case without tether or with
a melting tether. The maximum heat flux is diminuished by
about one order of magnitude.
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Fig. 9: Aerodynamic thermal flux of endmass

With the computed heat flux on the endmass we made a
simple calculation of the temperature of the endmass. By
using only the mass of the aluminium box (7kg) for the heat
capacity of the endmass (total mass of 23kg) in the thermal
equations we assume that the heat transfer between the ou-
ter aluminium shell and the inner instrumentation is very
low. We consider only the incoming aerothermodynamic
heat flux and the outgoing radiation heat flux. The tempe-
rature of the endmass for the three cases, as shown in Fig.
10, demonstrates also very well the influence of the tether.
Whereas for the connected tether and endmass the tem-
perature stays far below the melting temperature, the
disconnected endmass evaporates in the atmosphere.
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As we can see in the snapshot display (Fig. 5) the
onentauon of the tether is almost constant with respect to
the windvelocity as long as the tether is out of the dense
atmosphere. Fig. 11 shows the same effect. Once the tether
enters the atmosphere it tends to aline itself with the wind-
velocity vector.
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Fig. 11: Orientation of the tethersegments

The tethersegments reach different maximum temperatures
and fluxes. The aerodynamics fluxes of the tethersegments
depend strongly on the angle of attack of the segments.The
computation of the tether temperatures (Fig. 12) shows that
the tether does not reach temperatures higher than 1000K.
For modern materials such as quartz or graphite this tempe-
rature is not too high.
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Conclusions

The simulations of the reentry of the SEDS endmass shows
a new and very promising application of tethers. A heat re-
sistant tether attached to a reentry body acts as a hypersonic
parachute and reduces the heat loads of reentry body of a-
bout one order of magnitude. The tether which already re-
places the retromotor for the initiation of the reentry also
simplifies the necessary heat protection of the reentry cap-
sule. A heat resistant tether would be very advantageous for
sample retums from the Space station. A tether does not
produce pollution like a retromotor and can drastically re-
duce the mass required for the heatshield of the reentry spa-
cecraft. The same considerations apply for unmanned Mars
missions, whereby a heat resistant tether could not only be
used for aeroassisted breaking ) and for a low altitude te-

thered Mars probe ® but also for a low temperature reentry

on the Martian surface. Many other applicationscould be
conseived in the future.

Even with current technology and materials a first testmis-
sion seems to be feasible. Testing this attractive alternative
could readily be carried out in connection with the Ameri-
can SEDS, the German-Russian RAPUNZEL project or
using on of the frequent piggy back opportunities of diffe-
rent launchers.

A suitable capsule could be the German MIRKA capsule
which is under development at JENA OPTRONIC in Jena
and at KAYSER-THREDE GmbH in Munich or a small
Russian capsule which will be developed by the SAMARA
AVIATION INSTITUT, Russia in Cooperation with the
TECHNICAL UNIVERSITY OF MUNICH and KA YSER-
THREDE GmbH..
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9.0 DEPLOYMENT DYNAMICS OF SEDS-I
Figure Captions

Figs. 9.1(a-i)  Dynamics during deployment of SEDS-1. Initial conditions and orbital
characteristics as follows: 198x723 km elliptical orbit; ejection velocity =
1.64 m/s; ejection angle = -4.7 deg (backwards); orbital anomaly at
satellite ejection = 170 deg (i.e., 10 deg before apogee). The minimum

tension in these simulation runs varies from 10 mN to 40 mN.

Figs. 9.2(a-d)  Simulation runs of SEDS-1 for relatively high values of the minimum
tension, i.e., from 50 mN to 70 mN. The system and orbital

characteristics are as in Figs. 9.1.
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9.1 SEDS-I deployer

The SEDS deployer is a passive (i.e., without any retrieval capability) system
designed and built by Tether Applications Inc. of San Diego, California.

The deployer is a large, stationary spool of tether which deploys along the axial
direction, from the outer perimeter of the spool. Upon exiting the deployer canister, the
tether, as it unwinds, cuts through two light beams which shine on two photodetectors
thereby counting the numbers of deployed tether turns. Subsequently, the tether goes
through a brake, a tensiometer, and a tether cutter. The bruke is a barber pole that, when
engaged, forces the tether to spiral around the pole, hence producing a friction force that

varies exponentially with the number of brake turns.

The SEDS deployer can handle satellites with a mass of up 1o 30,000 kg for short
tethers of 4 km and a mass of 90 kg for the longest tether of 80 km. In its present
configuration the small satellite at the tether tip is only 23 kg and the tether is 20 km long
made of a carbon fiber called Spectra-1000. The satellite, in the current configuration (i.e.,
SEDS-I and SEDS-11) is ejected by a spring device (Marmam clamp) which provides an

ejection velocity of 1.64 m/s.

The potential application of the SEDS deployer are many, especially in the fields of
atmospheric science, reentry of spacecraft, and injection of spacecraft to different orbits

without the use of thrusters.

The first paper included at the end of this section gives a concise description of the
SEDS deployer, the small satellite utilized for SEDS-I and SEDS-II, the characteristic of
the tether and the potential applications of the system.

The second paper included at the end of this section describes the complex attitude

dynamics of SEDS-1 end-mass and a passive device to reduce the attitude oscillations.
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9.2 Simulation of SEDS-1 Deployment Dynamics

The deployment dynamics of SEDS-1 was analyzed for the initial conditions and
orbital parameters expected for the first mission. They are as follows: 198x723 km
elliptical orbit; ejection velocity = 1.64 m/s; ejection angle = -4.7 deg (backwards); orbital
anomaly at satellite ejection = 170 deg (i.e., 10 deg before apogee).

The frictional tension model adopted in the following simulations is the model
developed by J. Carroll and documented by J. Glaese in Ref. [1]. The friction is modeled
as the sum of two terms: a static term (the minimum tension) and a dynamic term
proportional to the velocity squared. The brake amplifies the two terms above by
increasing them exponentially with the wrap angle of the tether around the brake-post time

the friction coefficient.

An additional friction multiplier is provided by the exit angle between the tether and the
exit guide of the deployer. This effect is also modeled with an exponential function with

the exit angle time the friction coefficient as the exponent. In formulas:

T =(To + IpV2 A eE) eB e(XAbs(@, - 8) 9.1)
where:

Al =1-AgxL/Lgy

L = tether deployed length,

Lrun = fully-deployed tether length,

Agol = tether annulus solidity,

B = brake parameter = 27 f n,

f = friction coefficient = 0.18

n = number of tether turns around the brake post,
To = minimum tension,

p = linear density of the tether = 3.3x10-4 kg/m,
0 = in plane libration angle,

90 = null exit angle = 65 deg,

I = inertia multiplier,

E = area exponent.

The minimum tension is determined by the frictional force in the absence of any

braking action. This tension component is, in first approximation, velocity independent
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and consequently we will call it the static component of the tension. The other component
of the tension is a dynamic component which depends upon the velocity squared. The first
exponential term in eqn (9.1) models the effect of the braking action whereby the brake
parameter B is proportional to the number of brake turns. The second exponential function
models the effect of the friction due to the exit angle of the tether with respect to the
deployer exit guide.

The static component of the tension dominates the deployment dynamics in the early
part of deployment. The static term also affects the duration of the deployment whereby at
a higher tension corresponds a faster deployment and vice versa for a lower static tension.
The dynamic tension affects the deployment profile at comparatively high velocities, i.e.,

for the latter part of deployment.

Figures 9.1(a)-9.1(i) show the deployment dynamics for different values of the
minimum tension. A higher minimum tension implies a deployment which is slower than
nominal before 7 km of deployed tether length (cross over point) and higher than nominal
after the cross over point (see Fig. 9.1(a)). The net effect is a faster deployment for higher
values of the minimum tension. The maximum tether speed is also higher for higher
minimum tether tension (see Fig. 9.1(b)).

In the above simulations, the brake is activated at a tether length of 18.94 km (i.e.,
95% of the fully deployed tether length). The final tether speed is about 7 m/s. For a
brake-post rotational speed of 0.0145 turn/s and a minimum tension ranging from 10 mN
to 40 mN, the number of brake turns before reaching the tether end ranges between 1.4 and
1.8 (see Fig. 9.1(e)) where the lower number of turns corresponds to the higher value of
the minimum tension. The tether tension vs time for various values of the minimum
tension are shown in Figs. 9.1()-9.1(i).

The following tension model parameters were considered nominal before the flight of
SEDS-1[2}:

Minimum tension = 20 mN,
Inertia multiplier =3,
Annulus solidity = 0.96,
Area exponent = -0.8.
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9.2 Off-Nominal Deployment Cases

If the minimum tether tension is high, the momentum imparted to the end-mass at
ejection can be entirely dissipated by the frictional forces. In the following simulation runs,
shown in Figs. 9.2(a)-9.2(d), the minimum tension is increased up to values as high as 70
mN.

Full deployment is attained for values of minimum tension lower than 65 mN.
Moreover, the deployment stops temporarily for values of minimum tension between 50
mN and 65 mN. The deployment stops temporarily at a tether length that ranges between
0.55 km and 0.85 km where the shorter length corresponds to the higher minimum tension.
The pull of the gravity gradient against the frictional forces is responsible for resuming the

deployment in those cases whereby the minimum tension is less than 65 mN.

For a minimum tension of 70 mN, the deployment stops at a tether length of 0.5 km.
Since the gravity gradient is too weak at that tether length and the friction is too high, the

deployment does not resume.
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9.3 Conclusions on the simulation of SEDS-1 deployment

The results of the pre-flight deployment simulations, indicate that SEDS-I can reach
the fully deployed length of 20 km if the minimum tension is below 65 mN.

For a minimum tension between 50 mN and 65 mN, the deployment stops temporarily
at a tether length ranging from 0.85 km for the lower tension to 0.55 km for the higher
tension. The deployment subsequently resumes thanks to the gravity gradient.

For a minimum tension of 70 mN, the deployment stops at a tether length of 0.5 km

and never resumes.

For values of the minimum tension between 10 mN and 40 mN, the deployment never
stops. The deployment profile is qualitatively the same for all these cases. The maximum
in-plane angle ranges from 52 deg to 75 deg. The time to reach the final tether length
ranges from 4,650 s to 5,200 s. The time from ejection to the tether swinging across the
local vertical ranges from 5,610 s to 6,250 s. The shorter times correspond to high

minimum tensions.

From the SEDS-1 flight data, it can be inferred that the value of the minimum tension
was about 35 mN, the maximum angle of libration 57 deg, the maximum length of tether of
19.94 km was reached after 4602 s from ejection, the end of the tether was reached with a
velocity of about 7 m/s. The brake was ramped up at constant speed at about 19 km of
deployed tether length. The brake post had turned 1.5 turn before the end of deployment.
This was not sufficient to bring the tether velocity to zero before the end of deployment,
demonstrating the need for a close-loop control for improving the brake performance. The
tether was cut at t = 5611 s when the tether was close to the local vertical. The satellite with
the tether attached reentered and burnt in the upper atmosphere 1/3 of an orbit after release.
Visual observations from the ground showed the last pieces of burning fragments at 48 km
of altitude. From the last-transmitted telemetry data, the tether was still attached to the

satellite at an altitude of 107 km.
9.4 References
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In-Orbit Experimentation with the Small Expendable-
Tether Deployment System®*

Abstract The Small Expendable-Tether Deployment System (SEDS) is a lightweight deployer
capable of deploying instrumented packages and other tethered payloads, with a mass
limit of 1 metric ton, to a distance of up to 20 km. Since the payloads are not retrieved.
the system is simple and inexpensive. On its first flight. presently scheduled for 1992,
the deployer will be attached to the second stage of a Delta-Il rocket. which will
provide the stabilised platform for the deployment of the tethered payload.

SEDS is particularly suitable for complementing the Tethered Satellite missions by
providing a flexible system for experimenting with the tether-in-space technology.
SEDS can also provide a convenient means of testing instruments and/or procedures
that require the use of long tethers.

* Based on a paper presented at the 41st [AF
Congress. Dresden. Germany, 6-12 October
1990.
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1. Introduction The need for in-orbit experimentation and demonstration before flying majo
missions that involve innovative technology is stimulating the development of inexpen
sive space systems for carrying out precursor flights. The Small Expendable-Tethe
Deployment System (SEDS) falls into this category, having been developed by Energ:
Science Laboratories (ESL)* with NASA/Marshall Space Flight Center sponsorship
to provide capabilities complementary to the Tethered-Satellite System (TSS).

Unlike TSS, SEDS does not retrieve the payload attached to the end of a 20 km-long
thin tether'. By avoiding the complex control system necessary for retrieval, the
design of the deployer is drastically simplified. Moreover, since SEDS flies as a secon-
dary payload. it can take advantage of the frequent Delta flights®. This makes a SEDS
launch possible every few months, starting with the first mission presently schedu'ec
for 1992.

2. Hardware deSCI'iptiOll SEDS consists of a tether spool housed in a 33 cm X 25 cm (diameter) cylindrical
canister. The tether unwinds from the end of a stationary reel (Fig. 1). While unwin-
ding from the spool, the tether crosses two light beams, generating an electrical pulse
every half a turn. There are no moving parts within the canister other than the tether
itself. The tether tension at the exit is solely due to tether inertia, stiffness and friction.
After passing through the canister’s exit guide. the tether goes through a brake, a
tensiometer, and a guillotine .

The tensiometer is a spring-loaded device which measures the lateral pull produced
by the tension, since the tether is at an angle to the measuring device. The brake is
a ‘barber’s pole’ activated by a stepper motor (Fig. 1). When the gear rotates, the tether
is forced to spiral around the brake axie thereby producing a controllable frictional
force. This ‘adjustable-path’ braking method provides a tension that varies exponential-
ly with the number of turns wrapped around the brake axle up to the breaking strength
of the tether. The guillotine is a pyro-activated cutting device for disposing of the tether
and the payload at the end of the mission.

SEDS’ deployer has an overall mass of 13 kg, including a 7 kg, 20 km-long tether.
This tether is capable of handling payloads weighing up to ! metric ton. The first
payload, however, will have a mass of only 23 kg. A summary of the masses and
dimensions of the SEDS components® is given in Table 1.

The tether has a diameter of 0.75 mm and a linear density of 0.33 kg/km. The tether
material is Spectra-1000, a high-strength polyethylene synthetic fibre, which yields a

Figure 1. Tether spool, brake and cutter of
the SEDS deployer

* ESL personnel who developed SEDS have I —— ——
recently spht off to torm Tether Applications. e di BT L e e Sy
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Table 1. SEDS mass and size data

Item Mass (kg) Size (cm)
Deployer Canister 3 2533
Tether 7 20 km x 0.75 mm
Brake/Cutter 1 8x8x20
Electronics 2 8x13x25
End Mass 23 20x30x40
Brackets/Clamps 4 n/a
Total 40
Table 2. Characteristics of tether materials
Tensile Specific Tensile
Density Strength Strength Modulus
(g/em®) (GN/m™) (mx10% (GN/m?)
Spectra-1000 0.97 2.99 3.1 172
Kevlar-29 1.44 2.76 1.9 131
Steel 7.85 1.45 0.2 207
Aluminium 2.64 0.31 0.1 69

breaking strength of 850 N for the SEDS tether. The characteristics of Spectra-1000
are compared with those of Kevlar-29, steel and aluminium in Table 2. It has the
highest tensile-strength/weight ratio (i.e. specific strength) of the four materials.
Since Spectra has a melting point of only 147°C and rapidly loses its strength above
80°C, this material is suitable for high-altitude missions like SEDS and TSS1, but not
for low-altitude atmospheric missions. The estimated tether temperature for SEDS
during deployment varies from 20°C to about —10°C. The minimum temperature is
reached during eclipses and the maximum occurs before tether deployment. These
temperatures are well within the Spectra operating limits of +66°C and —267°C.
The canister will be attached to a Delta second stage above the ‘Miniskirt’ in the
Guidance Section” (Fig. 2). An end mass, connected to the tether tip, is mounted
side-by-side with the deployer before deployment (Fig. 3). This end mass is ejected
by a spring-loaded Marman clamp (Fig. 4) and deployed to a distance of 20 km in
1.5 h period®. At the end of the mission, the tether will be cut at the deployer end.

Figure 2. SEDS’ location on the Delta-II
second stage
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Figure 3. Flight assembly of SEDS" deployer This operation deorbits the payload and the tether, which then burn up in the upper
and end mass atmosphere one-third of an orbit after being cut loose.

The end mass, which is a rectangular box of Aluminium-6061 with a radar corner
reflector, is instrumented with a three-axis gyro package. a three-axis tensiometer
mounted at the tether attachment point, a three-axis magnetometer, and temperature
sensors®. The characteristics of these instruments are given in Table 3. The
accelerometers and the three-axis tensiometer have three channels each with three
different measurement ranges. In this way, a high relative accuracy is provided over
a large dynamic range.

Data from the instruments on the end mass are collected at a rate of either | Hz or
10 Hz by the onboard computer and stored in the 0.5 Mbyte RAM memory°>. Data
are continually transmitted by means of an S-band transmitter and recorded whenever
SEDS is in sight of a ground station. The transmission rate for the payload data is
1.25 kbit/s. The deployer data are transmitted on a different channel through the
Delta’s telemetry link at a rate of 4.8 kbit/s. The modulation scheme is IRIG-
compatible and the data are time-tagged in order to correlate events on the end mass
and on the deployer.

Figure 4. End-mass ejection mechanism
(Marman clamp)

Table 3. End-mass instrument characteristics

Range Resolution
Three-Axis Magnetometer 600 mG 4.7 mG
Three-Axis Accelerometer +1 mg 8.3 ug low range
+5 mg 42 ug medium range
+50 mg 0.42 mg high range
Three-Axis Tensiometer +100 mN 0.83 mN low range
1IN 8.3 mN medium range .
+ION 83 mN high range

3. Orbital dynamics On the first mission, the Delta second stage is expected to follow a 100 X 400
nautical mile orbit (not yet finalised). The deployment of the tethered payload starts
at apogee by triggerinig the pyros of the Marman clamp, thereby ejecting the end mass
with 1.6 m/s initial velocity. The end mass pulls the tether out of the canister while
following a trajectory dictated by the initial AV and the tether tension produced by
frictional forces®. When the gravity gradient overtakes the other forces at about
1—2 km distance from the Deita, the deployment rate increases. At a distance of

Y
=
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19 km, the brake is activated, the speed of the end mass is smoothly reduced to zero
and the system librates toward the local vertical (LV). As the end mass approaches
LV, about 1020 s after braking begins, the tether is cut loose. The end mass and the
tether follow a reentry trajectory and burn up in the upper atmosphere one-third of
an orbit later.

The duration of the first mission is limited by the energy provided by the launcher’s
silver —zinc batteries. Mission duration can be increased, at a price, on future flights
by adding an extra battery to the Delta.

Figure 5a shows the trajectory of the end mass and the tether (side view) from r=0
to r=5600 s with snapshots taken every 200 s. Figure Sb shows the tether tension.
speed and length as a function of time. Figure 5c¢ shows snapshots (side view) every
10 s for the last 700 s of the deployment. Some features of the transverse waves along
the tether are visible in this figure.

SEDS’ tether dynamics is simulated by modelling the tether with seven point masses
connected by massless springs and viscous dashpots. The Delta-II second stage and
the end mass are modelled with two additional point masses. In the computer
simulation used to derive the above results. the environmental models are as follows:
aerodynamic forces are based on a Jacchia 1977 density model, while the gravity
forces are computed by means of a J,+J/, gravity model. In addition. the tensional
forces are provided by the visco-elastic tether segments connecting two adjacent
lumps "

SEDS’ first mission is designed to explore the dynamics of a long tethered system,
and to analyse specifically: the motion of the end-mass during deployment; the tether
motion: the wave propagation along the tether: and the material damping
characteristics.

To assist the investigation of tether dynamics. a set of radar dipoles has been
embedded into the tether at its mid-point. These dipoles will be tracked, together with
the Delta-1I stage and the end mass. by radars on the ground, in order to provide an
absolute reference frame for studying the motion of the system. The radar dipoles will
also make the first lateral harmonic of the tether motion detectable.

In addition. three 3 m-long lead wires have been embedded into the tether at the 17.9,
18.3. and 187 km points. Each will produce a tensional pulse, close to the end of the
tether’s deployment, lasting 0.3 s and with an amplitude 2.5 times higher than the
tension’s unperturbed value. These tensional pulses will excite waves along the tether,
which will be detected by the tensiometer and/or accelerometers. Consequently, it will
be possible to analyse wave propagation, tether-material damping, and elasticity
characteristics.

Several future missions are being planned which go beyond the investigation of tether
dynamics. These are precursor flights for™:
(iy  electrodynamic experiments with short, highly conductive tethers;
(1i)  payload orbit circularisation;

(i)  reentry-capsule deorbit:
(iv) data collection by means of atmospheric probes (either while tethered or after
release);

(v)  precision attitude control of the end-mass using tether-induced control torques:
(vi) low-altitude spaceborne gravity gradiometry or other remote-sensing activities.

Since tether retrieval is inherently unstable, large tether oscillations excited during
station-keeping are very difficult to damp out during retrieval. Consequently, the
excitation of large tether oscillations must be limited in a tethered system that needs
to retrieve the end mass. Since SEDS does not retrieve the tethered payload, the system
can be used to conduct experiments that invole large dynamic disturbances.

For example. SEDS 1s ideal for carrving out electrodynamic experiments with high

FSA Tourpal 1001 Vol 1S C '3 ,
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Figures 5a—c. Results of simulation of SEDS
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currents and consequently large electrodynamic drag. For similar reasons, SEDS is
best suited for aerothermodynamic research at very low altitudes. The strong
atmospheric drag at low altitudes or the strong electrodynamic drag at high tether
currents excites large tether oscillations. which makes the retrieval of the payload very
difficult if not impossible.

The expendability of the hardware calls for a focus on low-cost payloads (an excep-
tion is the use of SEDS to de-orbit a reusable re-entry capsule or probe). The fact that
the host vehicle is unmanned should speed up the development and flight of innovative
experiments by eliminating potential delays associated with human safety issues.
Consequently, SEDS is suitable for carrying out early precursor flights for
demonstrating the validity of tether technology in space and evaluating the perfor-
mance of prototype scientific instrumentation which is being developed for future
flights on more ambitious systems.

The Small Expendable-Tether Deployment System (SEDS) provides a low-cost
facility for conducting experiments that require the use of long tethers. Such
experiments range from precursor flights for investigating the dynamics of tethered
systems, to electrodynamic and aerothermodynamic flight experiments. Specifically,
the first mission (TDE-1) is a dynamic-explorer mission for providing data
complementary to the Tethered Satellite flight data.

Because of SEDS’ low cost. and because of the frequent flight opportunities.
scientists will be able to obtain a quick turnaround of their experimental results. In
some instances. SEDS lends itself to more adventurous and innovative experiments.
where the low cost of a flight will make the taking of risks more acceptable than on
a Shuttle-based mission.

Support for this research was provided by NASA/Marshall Space Flight Center
(NASA/MSFC) with Mr C. Rupp and Mr J. Harrison as technical monitors. SEDS was
developed under SBIR contracts and follow-on funding from NASA/MSFC between
1983 uand 1989, with the same technical monitors. We would also like to thank
Dr. M. Cosmo of the Smithsonian Astrophysical Observatory for providing part of the
dynamic-simulation results.
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Abstract

The Small Expendable-Tether Deployment System (SEDS) provides a low-
cost facility for deploying tethered payloads in space. Among various
Objectives, SEDS' first flight, scheduled in March '93, will assess the
capability of tethered platforms to carry out measurements in the upper
atmosphere. The performance of onboard instruments is seriously affected
by the payload's attitude dynamics. In this paper, SEDS' attitude dynamics
and stability are analitically and numerically analysed for the nominal
mission. It is shown that although a passive damper can be used to reduce
the amplitudes of the attitude angles, appropriate controf techniques are

required for scientific instrumented platforms.



1. Introduction

The first mission of the Small Expendable-Tether Deployment System
(SEDS), scheduled for flight in March 1993, will be a precursor flight for
investigating the dynamics of long tethers in space. A 25 kg payload will be
deployed with 20 km-long tether from the second stage of a Delta Il. At the
end of the deployment when the end-mass swings toward the local vertical
the tether is cut and payload and tether re-enter the atmosphere[1-3]:

The instrumentation on board the payload[4] is mainly intended to collect
data on the dynamics of spaceborne tethers and the orientation of the end-
mass. These data, however, provide also the opportunity to assess the
performance of tethered payloads as scientific platforms for in-situ
measurements of the Earth's upper atmosphere and ionosphere[5]. To this
end payload attitude stability and control are necessary to maximize the
mission's scientific return[6].

Since in a tethered system the largest external torque is provided by the
tether tension, the attitude dynamics of tethered payloads has unique
features with respect to classical satellite configurations[7-10).

SEDS adopts a low-tension strategy at the beginning of the deployment to
minimize the momentum exchange between deployer and payload during
major part of the deployment. Therefore attitude perturbations from other
sources and/or initial conditions could be significant.

This paper deals with the end-mass attitude dynamics and stability. To this
end a simplified analytical model of the payload attitude is developed under
the assumption of small angles. Then the satellite attitude model is
implemented in the numerical code that simulates SEDS' deployment, to
analyze the dynamics of the end-mass during the nominal mission. The
results show that the initial phase of deployment is characterized by tumbling

of the end-mass. A passive damping device is proposed to limit the



amplitudes of the attitude angles and a numerical simulation is run to assess

its effectiveness.

2. Small attitude oscillations and stability

Fig.1 shows a schematic representation of the payload when (a) it is
attached to the Delta Second Stage and (b) during the deployment. The
payload is assumed to be a rigid body. The moments of inertia (I,,1,,1,), the
products (I,,,1;;,1,,), and the body coordinates of the tether attachment point
(x,,%;,%;) of SEDS-1 payload are listed in Table 1. In the following, in order
to simplify the analysis the body frame (1-2-3) is assumed to coincide with
the payload's principal axes.

The attitude dynamics is described considering the yaw (v ), pitch (B) and
roll (o) angles as the Euler's angles of the body axes (1-2-3) with respect to
a right-handed reference frame, whose origin is at the payload's center of
mass, the z-axis coincides with the position vector and it is directed toward
the Earth, the y-axis is perpendicular to the orbital plane and the x-axis is
directed along the flight direction, (Fig.1). Due to the location of the tether

attachment point, the pitch angle has a non-zero mean value By

2.1. Equations of motion

The equations of motion have been derived under the following
assumptions[11}

- the payload's center of mass is in Keplerian circular orbit;

- the tether is assumed to be straight and unelastic;

- the gravitational potential is iinearized:

- small attitude angles.



Moreover, since the tether tension slightly changes during the first part of the
deployment[1], it will be considered constant (3 10-2 N).
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Q the orbital angular velocity, T the tether tension, and B, is given by the

solution of the following equation:

X, COS X, Sin
1 ﬂo -+ T 3 ﬂo
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T

~3Q’k,sinf, cosf, = 0 (3)

which is the equilibrium between the tension and gravity gradient torques
around the pitch axis.

Note that the pitch equation is decoupled from the roll and yaw equations.



2.2. Stability Analysis

If we neglect the roll-yaw coupling due to the tether, after Laplace
transforming eqns. (1a) and (1c) for null initial conditions, we obtain the

characteristic equation:
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Since 9—«—1— in the previous equation, by applying the Routh-Hurwitz
3 1

criterion[12] the conditions of yaw-roll stability can be derived:
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Egns. (5) show that the end-mass attitude stability is a function of the inertia
ratios, the tether tension torque, and f,. The roli-yaw stability region in &, — &,
plane is shown in figure 2. The shaded area is the locus of the values of k,
and k, that satisfy the roll-yaw stability condition. The angle & between k,-
axis and the line delimiting the stability area (Fig. 2) can be expressed as a

function of the location of the tether attachment point as:

5



s=igi-{ X)L (6)
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Notice that as x; increases, the stability region moves toward the right half

plane as 5 goes to —g.

The Pitch stability condition is:

3Q%k, cos B, — 3Qk,sin* B, - T—J;icosﬂ0 + Ti;'—sinﬁo >0 (7)

2 2

Under the assumption of small angles, conditions (5) and (7) are satisfied

and the payload attitude dynamics is then stable.
3. Numerical Model

The attitude dynamics of SEDS' end mass has been simulated numerically.
Both end-platforms and tether are modelled as lumped masses connected by
massless spring-dashpots systems[13]. The motion of the system is

described with respect to an orbiting reference frame (ORF) that rotates at

constant orbital rate Q, and radius R,. The origin of this frame coincides
with the initial position of the system center of mass. The X,-axis is along
ORF velocity vector, the z_-axis is along the local vertical toward the Earth,
and the y,-axis completes the right-handed reference frame[13]. The
external perturbations considered in this analysis are the tether tension, the
gravitational force, including the second zonal harmonic of the gravity field,
and the aerodynamic forces.

The payload attitude dynamics is computed by integrating the Kinematics

and Euler equations as follows:
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where I is the inertia matrix[12], N, the external torques and
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The unknowns in the above equations are the Euler's angles (9,9,y) of the
body axes (1-2-3) with respect to an inertial reference frame (IRF) X,Y,Z and
the body-frame components of the inertial angular velocity vector (0,,0,,0,).
The Euler's angles are defined as a 3-1-3 rotation sequence of the body
frame with respect to IRF, whose origin is located at the Earth's center with
the X axis pointed toward the Vernal Equinox, the Z axis pointed toward the
North pole and the Y axis completes the right handed reference frame.

The torques are computed taking into account the tether visco-elastic force
and the gravity gradient. The payload yaw, pitch and roll angles are then

evaluated by using transformation matrices[7].

4. Numerical Results

The simulation starts with the payload deployment from Delta second stage

at the apogee (716 km) of an orbit with inclination of 34 deg and perigee of



202 km. At the beginning of the deployment the payload is ejected with an
initial velocity of about 1.6 m/s.

The tension at the deployer, the deployed length and the deployment rate
are shown in Fig.3.

Payload pitch, roll and yaw angles are shown in Figs. 4-6. Large attitude
oscillations start as soon as the payload is ejected. Moreover, tumbling is
observable around roll and yaw axes. From our previous analysis we can
deduce that this dynamics is mainly caused by the initial phase of the
deployment. The low-tension deployment is unable to provide enough
restoring torque. Despite the increasing tension payload tumbling around roll

and yaw axes is observable throughout the whole deployment.
5. Tumbling analysis

In this section we analyze the influence of the initial conditions (see Tab. 2)
on the payload tumbling.

With reference to Fig. 7, we limit our analysis to the payload's rotation in the
(x-2) plane. Since the variation of the payload's rotational energy must be

balanced out by the work done by the external torques, we can write:

1

[(-8e=k,, k., (11)

to

where M represents the external torques, 8 the angular rate in the (x-z)

plane and E., and E., the payload rotational energy at t, and t,

respectively. In our case eq. (11) becomes:
;—‘(éz —ézo) = Tb[coselsine+(1—cose)sin6,] (12)

where 8, is the initial angular rate, and 6, and b (Fig. 7) are given by:



b = y/x,” +x, (13a)
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By substituting egs. (13) in eq. (12) we obtain:

02 = 6,’ —2Il[|x3|sin6+|x2|(cose—1)] (14)
1

By assuming éo =0, the maximum amplitude of the payload rotation can be
computed by setting 6 = 0. Then we have:

6=m-26, (15)
Therefore, in our case the initial value of é determined by the initial
conditions of the deployment and the tether tension, causes large attitude
oscillations of the payload. Furthermore, this analysis did not take into
account the roll-yaw coupling which also affects the amplitudes of the

payload attitude angles.
6. Attitude Stabilization

Our analysis shows that some attitude stabilization must be introduced in
order to avoid tumbling. Considering the low-tension deployment strategy
and the payload design, a displacement of the tether attachment point
appears to be the simplest solution to adopt. Since the payload tumbling is
limited to the roll and yaw axes (1 and 3 axes, respectively), the tether
attachment point can be moved along the 2-axis to provide the required
stabilization by increasing the tether restoring torque. With reference to fig.7,
by applying the work and energy principle, the following expression of x, can

be obtained:



s
_ [ sing _1_1(92—90)
xal= [(l—cos@))’xJ, 2T (1-cosd) (16)

Figure 8 shows |x, ] for different amplitudes of the roll angle given an initial
roll rate ( éO=2.7 deg/s). Considering the physical dimensions of the end_
mass an appendix can be used to provide the desidered displacement of the
tether attachment point toward the negative direction of the pitch axis.

The numerical analysis shows that the solution is effective in stabilizing the
satellite around both roll and yaw axes.

In the following simulation we have chosen x;|=11cm which gives a roll
amplitude of about 120 deg. Given the actual configuration of the end mass
the length of the appendix is 5 cm.

Figures 9 and 10 show the roll and yaw angles of the payload when the
appendix is introduced. Due to the increased restoring torque, no more
tumbling is observable around roll and yaw axes except at the end of the
deployment when the tether goes slack. This can be avoided by controlling
the tension in order to bring the payload to a smoother stop.

The displacement of the tether attachment point along the body 2-axis
causes the roll angle to oscillate around a large mean value (Fig. 9) wich
actually limits the length of the appendix. Therefore, although the appendix
is effective in avoiding the payload tumbling, it does not satisfy more

stringent attitude requirements.
7.Conclusions
The attitude dynamics and stability of the payload of the Small Expendable

Tether Deployment System have been analytically and numerically studied.

The analysis has considered the first nominal mission as reference case.
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Our study showed that the end-mass attitude stability is strongly affected by
the initial conditions of the deployment: tumbling around roll and yaw axes
starts as soon as the payload is ejected from Delta Second Stage.
The introduction of a rigid appendix at the tether attachment point is effective
in stabilizing the payload attitude dynamics. Nevertheless, if SEDS is used to
deploy platforms with scientific instruments only very iong appendices allow
more stringent attitude requirements to be satisfied. Therefore, considering
that the payload's reduced dimensions cannot accomodate inertia wheels
and/or a mobile tether attachment point, different control techniques must be
considered; such as:

- rigid appendices and viscous dampers;

- gas jets;

- drag stabilization.
The authors will focus their research on these issues by refining the attitude

dynamics model.
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Figure and Table captions

Fig.1. Schematic representation of SEDS's payioad when attached to Delta

Second Stage (a) and during deployment (b).
Fig.2. Roll-yaw stability region.
Fig.3. Tether tension, length and length rate during SEDS deployment.
Fig.4. Payload pitch angle versus time.
Fig.5. Payload roll angle versus time.
Fig.6. Payload yaw angle versus time.
Fig.7. Schematic of payload's roll rotation.
Fig.8. Displacement of tether attachment point on pitch axis versus roll angle.
Fig.9. Payload's roll angle versus time with appendix.
Fig.10. Payload's yaw angle versus time with appendix.

Tab.1.Payload inertia characteristics and body coordinates of tether

attachment point.

Tab.2. Deployment initial conditions.
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Tab.1 Payload inertia characteristics and body coordinates of tether

attachment point.

I,(kg-m?) 372
L(" 436
1,(") 195
ING 005
1(") -011
15(") 022
x,(m) -184
x.(") -027
x,(") -165




Tab.2 Deployment initial conditions

angular
rates(deg/s):
©,
@,
@,

ejection

velocity(m/s)

2.701
0.120
-3.168
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10.0 ANALYSIS OF SEDS-I FLIGHT DATA

Figure Captions

Fig: 10.1 SEDS-1 Magnetic field modulus

Fig. 10.2 Magnetic Field Modulus corrected for bias

Fig. 10.3 Scalar product of reference and measured unit vectors
Fig. 10.4 a-c End-mass angular rates components

Fig. 10.5 a-c End-mass angular accelerations components

Fig. 10.6 a-c Difference between computed and flight angular acceleration components
Fig. 10.7 Load Cells Angular Accuracy

Fig. 10.8 Magnetometer Angular Accuracy

Fig. 10.9 Angular estimation accuracy

Fig. 10.10 Angle between x and y load cells components

Fig. 10.11 X,y and z magnetometer components

Fig. 10.12 a-c End-mass Euler angles vs. time

Fig. 10.13 a-b  FFT of load cells and accelerometer x and z component
Fig. 10.14 a-b  FFT of load cells and magnetometer x and z component
Fig. 10.15 SEDS-1 theoretical modes frequency vs deployed length.

Fig. 10.16a-b Comparison of best fit simulation with flight data: length and length rate.
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10.1 Introduction

The estimation of the SEDS-1 end-mass orientation has been a major undertaking of
our investigation. The payload was equipped with a three-axis magnetometer and three-axis
tensiometer to measure the orientation with respect to the geomagnetic field and the line

connecting the two end-mass, respectively.

As it will be shown in the following, the use of the load cells as attitude sensor and
the lack of a third attitude sensor (e.g. horizon sensor, sun sensor, gyro package, etc.) is
the limiting factor in getting a complete picture of the whole SEDS-1 mission as well as on
the accuracy of estimated results. The lack of redundancy also puts a limit on the
observations. Namely, if the tether was slack or the tether line was parallel to the Earth'
magnetic filed the end-mass orientation could not be computed.

The accuracy of attitude measurements is affected by the following sources of error:

- Error in the orbital state of the payload affecting inertial orientation of the line
connecting the two end-masses and to a lesser degree computation of the Earth's
magnetic field

- Error due to the natural angular displacement from the line connecting the two
end-masses due to the tether bowing. This is particularly true when the tension is
low, or the payload goes through phases of slack and taut tether.

Also, the tether curvature is not an observable with the SEDS instrumentation.

The direction of the line connecting the end-masses is strictly dependent on our ability
in simulating SEDS-1 deployment and whenever the tether is not slack. Therefore we have
limited our analysis to the first 4604 seconds of the mission before the load cells went out
of range for the first time. After the brake was applied to the last hundred meters of tether,
the end-mass reached an abrupt stop going through phases of bouncing before being cut
and reentering into the atmosphere. The accuracy of our simulations could be checked only
during the deployment since we have the data of the turn counter to produce length and
length rate time profiles.

Another problem that was encountered was that the magnetometer modulus showed a
high frequency (1 to 2 minutes) variation around the reference profile (e.g. Earth magnetic
field model), as shown in figure 10.1. After several hypotheses SEDS IWG suggested that

64

AN RN TSR L YRR



this variation could be caused by a dipole moment inside the end-mass even though the
cause for the bias is not clear yet. Moreover from preliminary discussions it seems that the
same kind of problem has affected SEDS-2 end-mass magnetometer. To the moment of this
writing there is no direct evidence of the cause of the bias, however we hope to clarify this

issue soon.

Therefore we treated the magnetometer data as affected by a bias and we applied our
least-square bias estimator obtaining the following results

Bias X = 31.8 mGauss Bias Y = -34.04 mGauss Bias Z= -43.17 mGauss
Bias Modulus = 63.5 mGauss

The modulus of the magnetometer signal corrected in this way is shown in figure 10.2

10.2 Data Check and Validation

In this scenario it became clear to us that a series of tests to validate and check the
flight data was as important as estimating the attitude itself. One straightforward test was to
compare the signal of the load cells to the accelerometers, the major difference being the
rotational acceleration terms. We carried out this test by Fourier transforming the load cells
and accelerometers data and then comparing the harmonic content. Since, the data were
time-varying we divided the time series in short subsets and then applied the FFT routine.

Another test we run consisted in comparing the scalar products of the reference and
the measured unit vectors. Within the limitations of our hypotheses on the measurement
and modeling errors the angle between the reference fields should be similar to the angle
subtended by the measured fields. The result of this test is shown in figure 10.3. The
general agreement is quite evident. The oscillations between 1000 and 300 seconds as well
as the offset after 4000 seconds are mainly due to the angular displacement between the
tangent to the tether and the line connecting the two end-platforms. Moreover we noticed
that some high frequency oscillations of the magnetometer original data were not

completely removed even after being treated for a bias.

Unfortunately, there was no straightforward test to compare the magnetometer output
with. To this end we computed the angular body rates using the load cells and
magnetometer data and then computed the angular accelerations. These acceleration can
then be compared to the signal of the accelerometers. Details of the algorithms are given in
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the Quarterly Report #33/34. We limit ourselves to show the angular rates, the angular
accelerations and the residuals § given by:

8=A-TM-Ac- At

where A, T. M are the accelerometer signal, the load cells signal and the EMP mass
respectively and Ac and At are the estimated centrifugal and tangential accelerations.

This test, however, has some limitations, namely:

A) The only external perturbation acting upon the end mass is the tether tension. This
is true at the beginning and at the end of the deployment when the end-mass is at apogee.

B) The end-mass rotates around its center of mass. This is true when the tether

tension is low.

C) The angular derivatives are computed using the Euler equations assuming that the
end-mass axis are principal axes. This limitation, though, can be removed easily in a

second order of approximation by introducing the other inertia terms.

The angular rates are shown in figure 10.4(a-c) and the comparison between flight
angular accelerations and estimated accelerations are shown in figure 10.5(a-c). The
residuals § are shown in figure 10.6(a-c). The agreement between flight and estimated

angular acceleration is generally good and, as expected, the match is poor at the beginning
after ejection and when the tension ramps up. The rms values of the residuals § for the

whole data set are:

8x = 0.00017 m/s2 (= 0.0044 N)
8y = 0.00029 m/s2 (= 0.0075 N)
8z = 0.00025 m/s2 (= 0.0065 N)

The maximum residual values are at the end of the deployment and are of the order of
0.001 m/s2.

This test is also highly sensitive to the load cells data. While processing and
calibrating the flight data NASA/LaRC noticed that the load cells were affected by a time
varying bias depending on the temperature. As a matter of fact, when we processed the data

for the first time we noticed that the residuals followed closely the temperature variation.
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Ray Rhew of NASA/LaRC provided us with an improved version of the load cells data and

the final results are shown in this report.
10.3 Covariance Analysis

By assuming that the magnetometer data were affected only by a bias, the accuracy of
the end-mass orientation was mostly affected by the load cells performance as angular
sensor. Figures 10.7 and 10.8 show the angular accuracy of the load cells and
magnetometer, respectively. As expected the angular accuracy of the load cells plays a
major role during most of the deployment since the tension is low. As soon as the tension
increases the accuracy (1 o) improves. Figure 10.9 shows the accuracy in estimating the

Euler angles as given by the covariance analysis.
10.4 End-mass Orientation

The orientation of the end-mass was estimated with the QUEST and TRIAD
algorithms. Even though the covariance analysis did not show a good accuracy in the
estimation, we still tried through physical reasoning to get the picture of the end-mass
attitude dynamics and orientation's time-history.

Figure 10.10 shows the angle between load cells x and y as compared to the angle in
the x-y plane of the tether attachment point. As the figure shows the end-mass tends to
align itself with the tether line. As the time progresses and the tension increases the
amplitudes of the oscillations decrease. The other interesting result is that, by looking at the
magnetometer data, the three components show a peak-to-peak oscillation at the same
frequency, as shown for a short portion of the deployment in Figure 10.11. From a FFT
analysis this frequency is "seen" only by the magnetometer and it is the same frequency that
showed up in the original magnetometer modulus. Provided that the magnetometer was
only affected by the dipole moment, we can assume that the end-mass was spinning
throughout the whole deployment around the tether. Since it was an almost constant spin it
did not appear in the accelerometer being the DC value and it did not appear in the load cells
signal because it could be not detected. We checked this possibility with John Glaese and
after some discussions and numerical simulations we agreed that this scenario was
plausible. It was also emphasized that the last part of the tether, the "shrink-wrap" section
played a major role in damping out the oscillations perpendicular to the tether line. On the
other end, rotations about the tether line cannot be damped since there is no restoring torque
and it seems plausible that the end-mass initial energy, picked up during ejection, spilled

into that degree of freedom.
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Even though it is hard to visualize the orientation of a body, for the sake of
completeness we are including the three plots of the Euler angles in figure 10.12(a-c). The
Euler representation assumes a 3-1-3 rotation sequence of the body frame with respect to
the inertial frame. The end-mass spinning is quite evident. As expected, QUEST and
TRIAD produced the same results.

10.5 Data Analysis and Validation: An Example

Physical considerations have helped us in the analysis and validation of SEDS-1 data.
In the following we will give an example of the type of analysis we have done during the
course of the study.

The data set under consideration spans from 3580 to 4092 seconds. Load cells and

accelerometers are averaged at 1 second to compare their signal with the magnetometer.

Figures 10.13(a-b) and 10.14(a-b) show the comparison of the FFT analysis of the X
and Z components of the load cells and accelerometer and load cells and magnetometer,
respectively. The three FFT are shown in the same scale being divided by their highest
peak. The load cell and accelerometer comparison is quite direct since both measure the
same dynamics. The agreement is quite evident on both axis. We also computed the
theoretical frequencies of the tether system as shown in figure 10.15 versus tether length
for the data set under consideration. The flight data show that the lateral frequencies and the
pitch frequency are excited and are very close to the theoretical values. We call pitch the
motion of a tethered platform around the z-axis (= out of plane). The z component show
two frequencies at about 0.7 and 0.9 Hz that appear also in the rotation rates. These are
typical attitude frequencies but their theoretical derivation is not simple since in this case the
small angles assumption is not valid. The FFT also show that the load cells worked well as

strain sensors.

The comparison between load cells and magnetometer is not as direct as the previous
one. Nonetheless both instruments measure the same rates of variation with respect to their
respective reference fields. Therefore the frequency content of the signal is what matters not
the peak of the harmonic. Both instrument show the same frequencies, the major and only

difference being at the spin rate frequency in the magnetometer.
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10.6 Conclusions

The analysis of SEDS-1 end-mass orientation has given interesting results even
though with a low accuracy. The load cells have provided excellent results as strain sensors
but their use as angular sensors is not very accurate. Too many assumptions on the
orientation of the tether line have degraded the covariance of the estimated angles. The
magnetometer, on the other hand, has shown an almost constant frequency suggesting a
spin of the end-mass around the tether line. Unfortunately this spin cannot be checked for

with other instruments.

We have carried a series of tests and computed the angular rates and the angular
accelerations of the end-mass. All the tests agree, within our modeling and intruments’

€ITors.

The final result of the estimation has a physical sense and confirms that, as expected,
the attitude dynamics of SEDS-1 is a very complicated process. We hope that SEDS-2
flight data will provide us with some more data to answer some questions still open.

10.7 Pulse Propagation Analysis

Tethered systems are subject to disturbances at the end masses and, in exceptional
circumstances such as a micrometeorite impact, in the body of the tether itself. Any such
disturbance will excite vibratory modes of the system. If the disturbance is relatively brief,
it can be profitable to think of it as generating an impulse or pulse propagating along the
tether which can impact on the other end mass and be measured by instrumentation there.
Both transverse (string like) and axial (column like) waves in the tether have similar formal
descriptions, although transverse waves have little damping and travel much slower than

axial waves. We concentrate on the transmission of axial disturbances.
Three attachments follow which summarize our work on this topic.

Paper One considers a system with one large end-mass (idealized as a fixed end) at
which the perturbation takes place and a smaller end-mass whose response is desired. The
tether is a uniform viscoelastic. Both the frequency and impulse response functions are
given, the latter in terms of an inverse Laplace transform. An exact solution is given for the

zero damping case, and numerical results plotted which include damping.
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Paper Two (an appendix from Quarterly Report # 26) discusses a model in which an
impulse propagates into a semi-infinite viscoelastic tether with no gravity gradient force and

no secondary end mass. Numerical results are presented using a Laplace formalism.

Paper Three presents data from pulses generated as three mass enhancements
embedded in the SEDS-1 tether were deployed. The broadening of the pulse is clearly
seen, and is probably due to tether damping.

10.8 Fit of Simulation to Flight Data

The program MASTERDEPQ was used to perform a number of simulations of the
SEDS-1 deployment. Parameters were varied and the end-mass trajectory compared to
flight length and length-rate data. The best “fit”’ was judged visually and is presented here;
for more details see Quarterly Report #33/34.

The deployer orbital parameters were provided by McDonnell-Douglas and John

Glaese of Control Dynamics and were not varied.

The end-mass properties and initial conditions were also nominal, except that a slight
increase in the ejection velocity (from 1.60 to 1.62 m/s, well within the expected range)
gave a better fit to the tether velocity in the first part of deployment.

A tension control law provided by Joe Carroll was used:

TDep = [TMin +J r A€ (d/d1)2 ] KBr KEx
KBr =exp(Kit)
KEx =exp(K2 a)

where:

TMin = Minimum Deploying Tension (constant)

J = Inertia Multiplier (constant, dimensionless)

A = Relative ratio (dimensionless) = 1 - Ago] (L/Lmax)
L = Instantaneous length

Lmax = Maximum length to be deployed = 19940 m
Asgol = constant

€ = Constant

p = Linear density

dli/dt = Deployment rate
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1= Brake turns (a function of deployed length)
a = Angle between tether exit guide and tether

K1 and K2 = friction coefficients = constants

The brake is activated when about 18900 m of tether are deployed. The exit angle
term influences the deployment for the first 3675 sec of deployment, then the deployer was
aligned with the tether.

Numerous simulations led us to adopt brake parameters somewhat different from the

nominal ones in the Design Reference Mission:

Nominal Final Fit
TMin 0.028N 0.035N
J 3 5
Asol 0.96 0.942
€ 0.8 0.61
K1, K2 0.18 0.18

Figure 10.16a shows the tether deployed length compared to the flight data. The
deployment at the beginning is slower. The deployed length is about 200 m shorter than the
flight data. From perigee (~2800 s) up to 4000 seconds the fit is very satisfactory.
Thereafter the numerical integration goes faster than the data reaching the final length of
19940 m 17 seconds earlier.

| Figure 10.16b shows the deployment rate as compared to the flight data. Note that
the fit is not very accurate at the beginning of the deployment yielding a maximum
difference of 0.2 m/s lower than the data. The flight data show a linear decay of the velocity
with respect to time. This also gives an error in the acceleration produced by the tension
(see Egs. 1). After perigee the numerical integration gives a faster deployment velocity
(~0.3 my/s). Other measured quantities (magnetometer and load cell data) also show close

agreement with the simulation; see Quarterly Report #33/34.
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Corrected Rotational Acceleration Y (m/s2)
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Corrected Rotational Acceleration Z (m/s2)
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Figures 10.12(a) and 10.12(b)
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TETHER AS A DYNAMIC TRANSMISSION LINE

Gordon E. Gullahorn”
Harvard-Smithsonian Center for Astrophysics
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Robert G. Hohlfeld!
Boston University
Boston, Massachusetts

A\BSTRACT

In a number of possible tether applications, e.g. grav-
ity gradiometry and a variable gravity facility, isolation of
the instrumented platform from disturbances on the base
(Shuttle or Space Station) is critical. The tether is some
times spoken of as a “low pass filter”, implying that only
the effects of the overall spring-mass system are significant.
However, we have analyzed the effect of longitudinal im-
pulses on the satellite when a continuum tether (subject to
viscoelastic damping and gravity gradient force) is included,
and find that in typical systems the effects of propagating
waves will be substantial. The results are applied to the
first two TSS missions and a variable gravity facility.

1. Introduction

Certain platforms which have been proposed for deploy-
ment on gravity gradient stabilized tethers require isolation
from dynamical disturbances upon their base (Shuttle or
Space Station), which will be subject to a variety of pertur-
bations from human and other activities. Such platforms
include gravity gradiometers for determining the Earth’s
gravity field, platforms with sensitive pointing requirements
and variable gravity facilities tethered to the Space Station.
On TSS1 we hope to observe the effects of prescribed im-
pulses such as firing of a Shuttle thruster, sudden applica-
tion of the brakes on the deployer reel, or impact of a crew
member on the Shuttle structure.

Apparently based on the idealization of the tether as
a massless spring, it is sometimes claimed’ that the tether
acts as a “low pass filter” of dynamic noise. This claim is
then used to infer either that there will be no problem with
high frequency dynamic interference on the above men-
tioned dynamic platforms, or that in the case of planned
TSS1 experiments, impulsive perturbations will never be
observed on the satellite.

" This work was partially supported by contracts NAS 8-
36810 and NAS 8-36606.

t Assistant Professor, Electrical, Computer & Systems En-
gineering

This is not the whole story. We demonstrate below
that, taking the continuum nature of the tether into ac-
count, the sharp onset of a forcing impulse at the Shuttle
end is perceived on board the satellite. The magnitude of
the satellite response is diminished from that of the forcing
impulse, and the response exhibits a broadened exponential
tailoff; these are due, however, primarily to the coupling be-
tween the tether and the satellite and its influence on an
impinging impulsive wave, and not on the whole system as
in the spring-mass model. The full impulse response func-
tion can be quite complex, showing repeated impulses as the
tether wave bounces back and forth between the satellite
and Shuttle, having a different shape at each impingement
on the satellite.

II. Equations of Motion

The physical system under consideration consists of {(a)
a uniform, viscoelastic tether of natural length L, (b} a
point mass satellite attached to one end whose response
we desire, and (¢) an attachment at the other end whose
motion we will specify but which is otherwise fixed, r.e.
which provides a forcing boundary condition. The fixed
end is in circular orbit around the Earth, and the system is
small enough that the linear approximation to the gravity
gradient along the local vertical may be used:

Fyy = 3GMm—=

3
orbt

= gggTm (1)

where z is the vertical distance from the orbiting reference
point (“fixed” attachment), m is the satellite mass, and M
is the Earth’s mass. The coefficient is conveniently com-
puted as g;g = 3g/Rorbit, for a low orbit with g~10 m s~ 2
and R,.p:it~6.5 X 10° m, we get g,o~0.5 x 107° s7%,

We consider only the gravity gradient force {exclude
air drag and Coriolis forces), and only longitudinal tether
motion and a point mass (excluding transverse “string” mo-
tions and satellite attitude variations).

Let £ be the natural coordinate along the string, from
0 at the fixed end to L at the satellite. (We shall soon scale
to dimensionless variables, and ~ denotes unscaled physical
variables.) The system starts in initial hanging equlibrium.
Let @(¢,1) denote displacement from this equilibrium. The



usual method of balancing forces on mass elements and tak-
ing limits leads to

< L,

{ puy={EA+ E' A }uu + ggouti, 0< ()
£

¢
{EA+EA s}y + mgggti, £=1L

mug =

where u is the tether mass per unit length, and FA and
E'A are the elastic and damping coefficients. The bound-
ary condition at £ = 0 depends on whether we are trying to
compute the impulse response function (IRF, time profile
of response to a single impulse) or frequency response func-
tion (FRF, strength of steady state response to a sinusoidal
forcing function, as a function of frequency). The two cases
are

IRF:  %(0,1) = (%)
{ FRF: (0,1) = 't ()
Scale these equations by
e=12/L
o2 e “

where ¢ = \/EA/u is the speed of longitudinal waves in
the tether. Then with u(€,t) = i(LE, £t), we get

ue = 1+ bz%iuu +yu, O<f<]l,

uy = —all +b61ju[+ yu, =1, (5)
IRF: u(0,t) = L/cé()

FRF: u(0,t) = e*!

where w = wL The dimensionless parameters, a, b, and

<y are defined by a = EAL/mc? = uL/m, i.c. the ratio of
tether mass to satellite mass, b = E'c/EL E'A/uLe =

ELA v ,andvzgggf

EAu = 9oo'Ex EA
the dlmensmn]ess IRF problem for a unit dimensionless im-
pulse and scale the result to the dimensioned response; di-
mensionless IRF’s shown are for unit impulse in (5).

In practice, we solve

The damping term (b%) in the £ = 1 boundary condi-
tion of (5) is important for some purposes; it is omitted in
at least one previous paper?. Tests performed without this
term show that the overall damping (in the spring-mass
mode) is substantially reduced; the effect on the character
of the response to individual impulses (e.g. rise times) is
less pronounced.

Note that {5) is a linear system. Most practical con-
cerns deal with acceleration and not displacement as such.
The derivative is a linear operator; hence, IRF’s and FRF's
computed for (5) apply equally well if interpreted as the
IRF or FRF of acceleration response to an acceleration in-
put.

We consider three systems in this paper: the first and
second tethered satellite missions, TSS1 and TSS2; and a
variable gravity facility, VG. Typical parameters are shown
in Table I, with the VG at 1 km deployment. (Note that the
VG is a much more complicated system, with three tethers
and four massess; we consider only the Space-Station/te-
ther /facility portion.) Except for T8S1, these values should
be taken as quite uncertain; even in TSS1 the damping E'A
is poorly known.

HI. FRF Solution

We solve (5) with the FRF boundary condition by at-
tempting a steady state solution

u(f,t) =

where complex R allows for a phase shift along the tether.
Substitution produces an ordinary differential equation
which is readily solved. The FRF is then just R(1) and
is found to be

R(f)e™", (6)

FRF= — (1)
cos 3 — gsinﬂ

Note that this is for a displacement forcing function and
measured displacement output. In a proposed experiment
for TSS1, the deployer rell will oscillate with known dis-
placement amplitude and acceleration response will be mea-
sured. The FRF for this system is

where

FRFpas = —w?FRF (9)

Both forms of FRF are shown in Figures 1 and 2 for the
TSS1 system with nominal damping. A comparison FRF
for the equivalent spring-mass system is shown in each plot
(the lower curve with only one peak). Even for the direct
FRF there is substantial response in the first few modes,
while for the acceleration response these modes strongly
dominate the spring-mass mode.

IV. IRF Solution by Laplace Transform

The derivation will be presented in a further paper®,
but by taking the Laplace transform of (5) with respect to
time, we obtain a soluble set of ordinary differential equa-

tions in space with the Laplace domain variable s as a pa-
rameter. The impulse response function is then

4 T T [T rrrrrrog
= 3 - AMPLITUDE RESPONSE ;
a C N
g - TSS 1 -
£y C i
& 1J ]

0 r U_ALA . ;_,_

| IR A |
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FREQUENCY (Hz)
Figure 1 - Amplitude Frequency Response Function, TSS1.
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1

RF="Y{—o— 10
£ {coshufﬁsinhu} (10)
where
/1~ ~/s?
= - 11
Y SV 1+ bs (11)

In the case 4 = & = 0 an exact inverse has been found,
evaluable with modest eflort at any time. Otherwise, it
appears that some form of numerical method must be used.

V. Limit Case, Exact Solution

If there is no damping and no gravity gradient, we ex-
pect an initial pulse to propagate distortion free through
the tether. By matching ingoing and outgoing waves at the
satellite end, the IRF can be found3;

IRF = 2¢~Y/7/7 (12)

where
1(13)

m
=
pe
is the decay constant after an initial sharp rise to 2/7 at
t = 0. which is taken as the moment the wave reaches the
satellite. 7 is tabulated in Table I. The reflected part of the
wave is also computed, its reflection from the Shuttle, and
a more complicated response is found on the satellite due
to this second, spread out, impulse; this process repeats
indefinitely to give®, in physical variables,

Kmar
IRF = ) ui(i) (14)
k=1
where 1. L
kmaz = [o(t/= +1)] (15)
2 c
- 2 . 2k-1 - 2k-1 — (- 2ty
= H({I- =—— - L7
well) = THE - T DarlE - T e
(16)
and the polynomials g are defined by recursion
gk-1(8) = qe(€) ~ 2/ qx(n) dn (17)
0

with ¢;(1) = 1. ie; in {15) is the greatest integer function
and H{(e) in (16) is the Heavyside function.

TABLE 1

TSS1 TSS2 vG
m 0.82x10"*kgm™! 0.49 x 10~2 0.49 x 1072
¢ 32x108 ms™! 3.2 x 103 3.2 x 103
EA 8.4 x 104 kg m s~ 2 5.0 x 104 5.0 x 10*
E'A 200kg m s~} 100 100
m 550kg 550 5 x 103
L 2x 10" m 105 10°
999 0.5 x 1072 572 0.5 x 1072 0.5 x 1072
a 0.30 0.89 1073
b 0.4 x 1073 0.6 x 10~ 4 0.6 x 102
~ 02x10"8 0.5 x 1072 0.5 x 10™*
L/e 6.25 s 31 0.31
T 21 s 35 320



This form of the solution {14)—(17) can also be derived®
directly from (10) with b = v = 0, and numerical evalua-
tions, though difficult, confirm the result also. Thus, in a
sense, this superposition of reflected pulses contains all the
physics of the problem.

If we scale this result as in (4), the decay constant be-
comes 1/a and the pulses initiate at ¢ = 1,3,5,.... Cases
with a broad response (a = 0.3) and a narrow response
{e = 3.0) are shown in Figure 3. Figure 4 shows the un-
damped IRF equivalent to TSS1, along with the equivalent
spring-mass IRF. Note the increasing phase lag relative to
the spring-mass IRF.

V1. Numerical Inversions

The rather elegant form of (14) — (17) does not seem to
be easily obtained when -y or b is non-zero. We are reduced
to some form of numerical solution.

The approach we have adopted is to use a routine from
the IMSL* library. A program was prepared which eval-
uates (10) along with (14) and the equivalent spring-mass
IRF. If we are near a sharp rise, as in the cases with zero
or small damping, the routine is not robust: numerical
overflows, oscillations, and failure due to excessive function
evaluations are experienced. One case (Figure 12, below)

even appears to have failed without issuing a warning.

Evaluation of (10} by the integral inversion formula via
the residue theorem and a Bromwich contour produces an
infinite sum of residues at the poles of (10). This has been
done in the 4 = b = 0 case, and the series converges slowly.
If v or b is non-zero, (11) introduces complications in the
function domain and in the choice of appropriate contour;
this case has not yet been fully solved.

E | 3
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n
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(=]

TIME
Figure 3 - Effect of parameter a on the IRF in undamped

case, v = b =0.

Using the IMSL routine we have performed some stud-
ies of the effects of damping and gravity gradient remaining
in dimensionless variables (a = 0.3 being used throughout),
and have evaluated IRF’s for the three systems in Table I.

Effects of Gravity Gradient

Gravity gradient introduces no energy dissipation, 1.e.
no damping, and the initial rise is as steep as for 4 = 0,
to the resolution of the numerical computations (Figure 5).
Note the “ringing” in the numerically computed solution,
~ = 0.3; this is an artifact, and occurs if the v = 0 case is
treated numerically.

Gravity gradient has a substantial effect on the longer
time scale response as shown in Figure 6. (The finite rise
times seen are due to the coarse resolution; numerical so-
lution proved difficult near the rises.)

Effects of Damping

A comparison of damped and undamped solutions for
TSS1 is shown in Figure 7. Damping is ten times nomi-
nal for clarity; however, there is reason to expect higher
damping in the space environment due to increased friction
between fibers, and in any case the nominal figure for damp-
ing is very uncertain. Note the progressive broadening of
the rise profiles in successive pulses.

Figure 8 demonstrates the effect of damping on the rise
time of the initial pulse. Note the large effect possible from
a small &.

Figure 9 compares a heavily damped IRF with the spring
mass equivalent. They are very similar, with a slight phase
shift.

[T T TP T[T T T[T T [TTTT]]
SPRING~MASS AND FULL IRF'S

ITlllllll[

IRF

Tllll]lllll|llll,llljllllll‘r‘

0 50 100 150 200 250
TIME

Figure 4 — Undamped and spring-mass IRF’s for TSS1.
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Figure 5 — Effect of gravity gradient on initial IRF rise.

The IRF’s for the three cases in Table I are shown in
Figures 10, 11, and 12. The cases are TSS1, TSS2, and a
variable gravity facility. Higher damping than nominal was
used in the first two cases to facilitate numerical solution.

The sharper appearance of TSS2 as compared to TSS1
is due more to the longer interval between pulses (due
to longer L/c) than to increased sharpness of individual
pulses.

The very different appearance of the variable gravity
facility case results from the larger satellite mass and the
short tether. Almost all the pulse energy is reflected, and
the relaxation time for the mass is large. Thus, we see a
series of essentially indentical pulses which rise only. The
linear section above t = 4 is probably a numerical artifact.
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n T
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TIME

Figure 6 - Long scale influence of gravity gradients.
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Figure 7 — Effect of damping in TSS1.

VII. Future Investigation

The only immediate prospect for physical verification
of these results is on TSS1 and TSS2, which will fly ac-
celerometers on the satellites. Perturbations designed to
provide impulses have been requested and a variety of nor-

mally occuring operations will also produce such impuises.
A ground test of impulse response would also seem quite
feasible and worthwhile.

Within the model and methods we have used here. sev-
eral lines of work are open. The Laplace inversion technique
could be made more robust. Approximate results for small
b and ~ could be attempted via the Bromwich integral or a
method similar to that used to get an exact inverse when
b = ~ = 0. The integral inversion method needs to be ana-
lyzed properly when b or -« is non-zero. The resulting series
of residues may be capabel of convergence enhancement.
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Figure 8 — Effect of damping on initial rise time.
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Figure 9 - Comparison of heavily damped IRF with equiv-
alent spring-mass IRF.

The model itself could be extended using essentially
the same methods. A finite mass Shuttle could be readily
included, as would a flexible deployment boom. Attitude
dynamics of the satellite will be more difficult: the resulting
equations are non-linear (in the boundary condition) even
for small angles. Multi-tether systems could also be solved,
providing a more realistic model for the variable gravity

facility.
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Figure 10 — TSS1 impulse response function.
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Figure 11 - TSS2 impulse response function
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VISCOELASTIC DAMPING OF A PULSE IN AN UNTERMINATED TETHER
DEFINITION OF THE PROBLEM

The mathematical problem describing a tension pulse propagating
into a tether terminated with a finite mass is very difficult,
even when damping or gravity gradient forces are not considered
(Gullahorn and Hoh1feld, 1987 and in preparation, provide a
closed form solution). Attempting to solve for the broadening of
a pulse due to damping seems formidable when the compliication of
the terminating mass is included.

The problem becomes more tractable when the terminating mass is
removed and the pulse is allowed to propagate into a
(semi)infinite tether, with an end condition only at the
originating end (assumed to be a relatively large deployer).
Ignoring the end mass should still give a good idea of the forces
on that mass due to the initial puise (the reflected pulses,
though, may still be important); perhaps in future work, given
the solution to the unterminated problem, we may be able to solve
the problem with end mass by appropriately reflecting that
solution. We also neglect gravity gradient forces; some
numerical work with the end mass case seems to indicate that the
gravity gradient does not have a smoothing or pulse broadening
effect. Also, gravity gradient forces in an infinite tether do
not make physical sense: Once a certain length has been
exceeded, the force (proportional to tether length) causes the
tether to extend indefinitely.

The equations describing tether motion are the same whether the
variable being considered is the tension, the position, the
acceleration, etc., since these are all related by linear
differential operators and the equations are also linear.

Because it is the most primitive physical variable, the one
typically used to derive the equations, we shall work with the
tether position. To be more precise, we imagine the tether fixed
at one end so that we may completely control that end’s motion,
and extending to infinity in a straight line; all tether motion
is confined to that line, i.e. is along the axis of the tether,
with no lateral or ’string’ motion. (In a more complete
treatment, this axial or ’column’ motion is easily decoupled from
the string motion and for small displacements they may be treated
independently.) We suppose that the tether 1is initially at rest
in an equilibrium state, in this case’simp1y unstretched, or
alternately consider an equivalent reference tether. Divide it
into infinitesimal ’elements’, each described by its position ’x’



along the reference. We can now disturb the tether, and in the
ensuing motion each element will be displaced but still carry
with it the 'tag’ x. We describe the motion of element ’'x' at
time 't’ by this displacement from equilibrium, u(x,t) =
(position at time t) - (reference position).

The equation describing the tether motion is derived by balancing
the acceleration of each tether element with the forces on that
element. The model assumed for the tether material determines
what these forces are. 1In general there will be three kinds of
force: elastic restoring force; dissipative forces due to energy
loss, such as friction; and external (body) forces such as
gravity gradient. More complex scenarios might involve changes
in tether properties due to, for instance, heating and cooling of
the tether. 1In our work here, we will use as simple a model of
tether properties as possible while retaining the features of
interest. The results will not be an exact and precise
prediction of expected tether response in a specific mission, but
are intended as an exemplar against which to compare actual
results (to see if any additional physics need be included to
explain actual behavior), and as at least an approximate
description of reality which can give us information on the
retation between damping and pulse velocity, or total energy loss
vs. pulse width, etc.

Specifically, we consider two forces on each tether element: A
perfect, Hooke’'s law, elastic restoring force due to the
extension of the tether on either side. And an internal, viscous
damping force, proportional to the rate of stretch of the tether
on either side; this differs from the more commonly considered
viscous damping due to friction with a fixed external fluid,
which is proportional to the velocity, and something similar
might also be due to, say, friction between tether fibers. The
arguments of such a derivation are familiar from numerous physics
and structural engineering texts and will not be repeated here.
The end result is:

d
Moy := AE'u + AE'-—-u o
tt XX dt xx

where pu is the mass per unit length of the tether, AE is the
tether axial stiffness (elasticity) and AE’ is an equivalent
damping constant. To simplify the equations, scale the distance
variable by the speed of sound in the undamped tether, 'c’, where



| @]
u = 11 + br—i-u t >0, 0<¢<x ¢ o
tt | dt!  xx

where b is a dimensionless damping parameter:

AE’ ' u

AE

Here we very cavalierly ignore the details of the scaling and the
difference between the original variable x (in meters or
whatever) and the scaled x (in seconds). From now on, x refers
to the scaled variabtle. A value of x = 2, for instance,
corresponds to the distance traveled at velocity ¢ in 2 seconds.

(We could scale both the space and time variables, and totally
eliminate parameters in the partial differential equation of
motion! However, this scaling does not have a simple
interpretation as the above does, and it is complicated enough
that it is difficult to see the effect of, say, very small
damping. This dimensionless problem might be useful for strictly
numerical work where only one problem need be solved by difficult
computation and stored, and all problems with arbitrary y, AE and
AE’ are solved by scaling and Tookup.)

To complete the mathematical statement of the problem, we need
initial and boundary conditions. For IC, we assume an initijal
state of rest:

u(x,0) := 0 0 ¢ X ¢ »
d

—u(x,0) := 0

dt

For boundary conditions, the end at x = 0 is controlled; for our
Ccase, we shall assume that the end is held fixed except for very
sharp impulse at time t = 0, idealized as a delta function. At
the x -> @ ’end’, a simple boundedness requirement appears to
suffice in the later analysis.



u(o,t) := &(t)

u(x,t) remains bounded as x --> =»

TRANSFORMATION TO LAPLACE DOMAIN

The problem as defined above is a partial differential equation,
with both x and t derivatives. Such problems are seldom soluble
directly. One common way to simplify such a problem is to
perform a Laplace transformation in one of the independent
variables. The Laplace transform is an integral transform, one
of a family of generalized Fourijer transforms, which carries one
from a domain in which problems are expressed in terms of a given
variable, say 't’, to one in which the variable is typically
called ’'s’. The Laplace transform of a function f(t) is called
F(s), and defined by

"wm -s 't
F(s) := J e “f(t) dt
0

The advantage of Laplace transformation for differential
equations is that it converts derivatives with respect to t into
simple multiplications by s. We shall not reproduce the details
of the transformation of our problem: they are found in numerous
applied mathematics books and are routine. We choose to

transform the variable t: u(x,t) --> U(x,s). The result is
2
s "U(x,s) := (1 + b's) U 0 ¢ X K =
X X
U(o,s) := 1

U(x,s) bounded as x -->

We have effectively decoupled the two independent variables. For
the purpose of solving the above, which is now an ordinary
differential equation, we can consider s to be a parameter of the
problem. When we have soclved the problem for each s
independently, we will then have the compiete function U(x,s).

For the mcment ignoring the dependence on -he pPArearez ., simply
writing U{x), and denoting deriva=ives by U'ix), =2%L., we get a
linear boundary value prct em:
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U {x) = v "Uix) :=
U{n) := 1
U(w) boundecd

where

ra

3]
)]

1 + b's

Notz Tzt v is constant for the purposes of solving the ODE, and
that fcr real v > -1/b, the coefficient is negative. The
solution is then almost trivial, and again including the
dependence on s, we may write

m‘ii‘gl VX
i p‘p, U(x,s) := e
R Qg .
f 1
or U(x,s) := exp|-x-s i
L J1 + b- s'

This is the complete solution expressed in the Laplace domain.
Unfortunately it does us little direct good. Physical insight,
as well as application to simulation of specific missions,
requires again converting from the Laplace domain to the time
domain, i.e. taking the inverse Laplace transform.

COMPUTING THE INVERSE LAPLACE TRANSFORM

Unfortunately, computing the inverse Laplace transform is not
usually as simple as the direct Laplace transform, except for
certain classes of functions. Additionally, the function whose
inverse transform is sought often exhibits complicated behavior,
as for our U(x,s). Indeed, it is likely that there often is no
closed form inverse for even seemingly simple problems.
Approximation techniques can be tricky since the inverse
transform is not well behaved.

A direct expression for the inverse transform does exist.
However, it requires extending the solution to the entire complex
domain. This is not too difficult with our present function,
although some care must be taken to stay on the correct branch of



the multiple valued square root function. Then we may write

1 rg + i o st
u(x,t) := ——————-J e ‘U(x,s) ds
21w i g -1 o

Note that here we are integrating along a vertical line in the
complex plane. The constant g is any arbitrary number to the
right of all singularities of the function U(x,s).

A common way to approach computing this integral is to form a
Bromwich contour in the complex plane: consider a Timited
segment of the vertical line along which the above integral is
taken, from g-iR to g+iR. Complete a contour by a large circle
about the origin intersecting the vertical line at those points
(other forms may be used). If there are any branch cuts, distort
the contour so as to enclose them with some tolerence €. By
Cauchy’s integral formula the integral around the complete
contour may be expressed as a sum of the residues of U(s) at all
the poles within the contour. We Jet R —-> o (and € --> 0, if
applicable), and compute the contributions of the 1argeucjrcﬂe
segment and of any contour segments along branch cuts and around
their termini, in the l1imit. Typically, the contribution of the
portion going to infinite radius vanishes. Then we may express
the solution as the sum of residues minus any branch cut
contributions. (This is all standard complex analysis, at least
in outline.)

Our example has no poles at all, but does have a branch cut along
the negative real axis (this is somewhat arbitrary) terminating
at -1/b. Some progress has been made, at considerable effort, in
demonstrating that the outer perimeter does indeed have zero
contribution and in evaluating the contribution along the branch
cut and around the branch cut point. This work is still
preliminary; it is not likely to result in a precise expression,
but may be able to provide physical insight (e.g., an
approximation for small damping) or convenient numerical methods.

As an interim expedient (partly done to check the derivation to
that point) we have decided to evaluate the integral expression
for u(x,t) directly. This evaluation is made relatively simple
using the MathCAD software package, a report writing and
numerical mathematics tool. The attached reports detail that
evaluation, but a brief introduction and some observations are
given here.

Three items are attached: First, a report showing how we
evaluate the integral expression; we indeed do see the expected
broadened pulse at the expected position. But there appears to



be some residual disturbance near the fixed tether end; a second
report shows that this is do to numerical problems evaluating the
integral at a distance from the actual pulse. Third, we include
a consistently displayed set of examples of pulse shapes for a
wide range of damping.

Essentially, MathCAD allows us to evaluate the integral
expression fairly directly. we simply parameterize a contour
segment as a function on a real interval, and integrate the
resulting complex function. We set a specific time t (we always
chocose t = 1) and compute the pulse shape as a function of x.
For each x value (we typically take 40 to 50) a separate
numerical integral must be computed, which can take moderate to
substantial computation time. The real and imaginary components
of the solution u(x,1) are plotted; as expected, the real
comporent looks like a damped pulse, and the imaginary component
is very small, essentially roundoff.

The integral is performed along a finite segment from g - iR to g
+ 1R. This leaves us two parameters g and R to choose. The
choice can strongly affect the efficiency, or even possibility,
of evaluating the integrals. We plot the integrand a1ong'the
line for a typical x value; MathCAD’s interactive nature allows
us to this readily for a variety of parameters g and R, and a
varijety of x, t and b, for evaluation on the computer screen. In
general, the integrand is much more tractable for values of x on
the pulse. Examples of tractable integrands are shown in the
first report and in the example pulse shape pages: the integrand
may oscillate mildly, or hardly at all, and has an envelope which
essentially vanishes within a few oscillations. R should be
chosen to encompass the region of non-negligible integrand. g
affects the integrand itself, and an improper choice can lead to
extremely large values or to envelopes which vanish slowly
forcing numerical integration over very many oscillations. For
points far from the region of the pulse on the x axis, it seems
impossible to find values of g leading to an easy integration.
Such intractable integrands are shown in the second attached
report which demonstrates the numerical problems near x = 0.

Computing a pulse shape can take anywhere from a few minutes to
an hour or so, depending on the damping, the range of x over
which the pulse is to be computed, and the parameters g and R (on
an i386sx machine with coprocessor). Since MathCAD is highly
interactive, and since some time must be spent exploring for
appropriate g and R, these computations are expensive in person
time. There is little hope of automating the process within the
context of MathCAD, but it is likely that a more prescriptive and
less exploratory method may be found to choose g and R, and then
the pulse computation could be performed by a standard
integration routine in Fortran or C.



A set of pulse shapes is displayed at time t = 1 for values of
the dimensionless damping b = 0.001, 0.01, 0.1 and 0.5. The
lower left plot on each page is the significant one: the top
plots show typical integrands, and the lower right is the
vanishing imaginary component of the integral. It is seen that
even moderate b values significantly broaden the pulse. Rather
than slowing the transmission, damping speeds it on two counts.
To first order, the pulse peak travels at the speed of the
undamped pulse (indicated by the vertical line at x = 1 on each
plot); hence, half of the pulse precedes the peak. Second, for
larger damping values, it is seen that even the pulse peak
outspeeds the undamped pulse.



OMGINAL PACE '8
OF POOR QUALITY

VISCOELASTIC DAMPED TETHER
DIRECT INVERSE LAPLACE EVALUATION -

The Laplace approach to solving the damped pulse problem leads to
an inverse Laplace transform, not readily expressed in elementary
functions. The inverse may be expressed as an integral along a
vertical line in the complex plane. This is typically evaluated
by completing the contour (Bromwich contour) and taking advantage
of any poles within, as well as branch cuts etc., but let us just
try to evaluate it directly for a sample damping and time, o
make sure we are on the right track. If we define

where b 1s a d-me~s-cniess damping parameter, x is position along
the tetrer !su-tably scaled) and s is the Laplace domain
va ~able. Then the profile at time t is

1 f'vg+1"c°

u(x,t) := exp(s-t)'U(x,s) ds O

2.n.-i u;g — 1’ B
where g is any value such that the cut is to the right of all
singularities.
In practice, although we can use complex numbers in the
integrand, we must parameterize the contour and then define the
contour integral as an integral over a real range (and of course

can’t actually use an infinite range). E.g.,

s(r) := g+ 1 'r ==> ds = i.dr
u(lx,t) := ———-g exp(s(r)-t) -U(x,s(r)) dr

We are interested in some particular time and damping, say:
t =1 b = .1 (note global definitions)

and also a couple of parameters for the integration:



First let’s look at the integrand:

Jmax := 201 J := 0 ..jmax

2'R }
dr := r :=-R + j-dr

Jmax J

calculate a whole vector of functions for a typical x:

X =1
el := (exp(s(r)-t) U(x,s(r)))
1 ™, | 0.2 | j
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Some lessons from experimenting with the above:

== The real part is symmetric, the imaginary part
anti-symmetric, and hence integrating to O.

-— g=0 seems like a good choice. For largish positive g, the
real part becomes oscillatory. For g approaching -1/b, it
becomes closely restricted near 0 but becomes very large
(e.g., 10%x%x8),

-—- As X goes away from x=1 (in the case t=1, where we expect a
pulse near if not at x=1) the integrand becomes
oscillatory, and the integral hence likely gets smaller.

Let’s evaluate u(x,t) for a few sample values and then do a pulse
profile:

recall t = 1 b = 0.1 integration params R = 20 g =

C
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kmax := 100 K := 0 ..kmax xmax := S:t xmax

dx := xX K =
kmax k
Uk = (u(xk,t)) recall t =1 b =0.1 R = 20 g =20
5 ! !
// \\\\
. \\
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The 1ittle tweak near x=0 appears to be a ubiquitous feature.
will look at it more closely in a separate file.

Note that the real part looks like a pulse at the expected
position after one time unit, and the imaginary part is
essentially zero (very small roundoff errors keep it from being

precisely zero).

We



VISCOELASTIC DAMPED TETHER
DIRECT INVERSE LAPLACE EVALUATION -
BEHAVIOR NEAR x = 0

In computing the pulse shape for sample times and damping, we
noted a typical behavior near x = 0 that is counter-intuitive:
the pulse profile dips below zero for x around 1/3 or so (the
major pulse peak is about x = 1, for t = 1) and then increases to
some fraction of the peak value as x --> 0. Is this real, or an
artifact of our limited integration range and limits of Mathcad’s
integration routine? Here we reproduce the analysis in the
previous paper in such a fashion that we can examine the region
near x = 0 in greater detail. We eliminate most of the
intervening prose and make the integration parameters R and g
explicit function arguments (rather than global variables) so
that a series of plots for varying R and g can be presented.

b := 0.1 typical, fairly strong damping
i— | ]
1
U(x,s) := exp{—x'S' —
L 11 + b's
s(r,g) := g+ i 'r ==>ds = i.dr
1 [ﬂR
u(x,t,g,R) := — J exp(s(r,g)-t)-U(x,s(r,g)) dr
2'n -R
kmax := 30 xmax := 0.3
xmax
k := 0 ..kmax dx := Xk = k-dx

kmax k



\J ,

xk 0.3



t =1 g := -2 R := 30 TOL = 1 10 (default TOL)

0.03 s
—
Re i"Uk ] ,0 ///
L Kl /
/
/
-0.05

0 XK 0.3

Kk

Ciearly, from these three examples, the behavior of the profile
near x = 0 depends very much on the integration parameters
chosen. It is not clear from the above whether the Mathcad
integral routine breaks down, or if the inaccuracy is due to the
neglected part of the integrand (R determines what is neglected;
g alters the character of the integrand). We will try two
approaches. First, change the default integral convergence TOL.
Second, plot the integrand for small x and varying g to see what
is going on.

-4
t :=1 g := -2 R := 30 TOL := 1-10
Uk := (u(xk,t,g,R))
0.03 A
- T
RerUk-‘ 0 4 |
|k 1 /
L kJ /'
//
// !
r/)”
e
~0.05 — '
0 xKk 0.3



The result looks virtually unchanged. So it does not seem to be
numerical error. Now look at integrand.

t:=1 R :=30 g:=0 x := 0.05
Jmax := 100 J := 0 Jmax
R
dr := ro:= j-dr
Jmax J eU := (exp(s(r,g)-t)-U(x,s(r,g)))
1N /“ -~
\ \ / \ /\ SN
Vo A \
Re)eu },0 / \ / L
AV VARV ARVARY
VAN
/
-1
0 r 30
J
t:=1 R :=30 g :=-2x := 0.05
Jmax := 100 Jd := 0 Jmax
R
dr := r:= j-dr
Jmax J eU := (exp(s(r,g) - t) U(x,s(r,g)))
0.2 |
AN AN
Re[eu |40 v 7 \ A \\ \\
7 A | /
;] SN N N N
T ~
-0.2 °
0 r 30
J

The above examples clearly jllustrate that the integrand for
small x is highly oscillatory and decreases in amplitude only
slowly with increasing variable of integration r. Thus it would
require integrating over very many oscillations to approach a
correct answer. In contrast, the behavior of the integrand for
values of x nearer the pulse peak was seen to be much more
amenable to accurate integration. Note also that as g becomes
significantly smaller than 0 the integrand decreases
substantially.



VISCOELASTIC DAMPED TETHER

DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b = 0.001 TIME: t =1
INTEGRATION PARAMETERS: g =20 R = 90
INTEGRAND FOR A TYPICAL VALUE OF X: X £ 1.5
1
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J
INTEGRAL (PULSE SHAPE) on interval: xmin = 0.5 xmax = 1.5
number of points: kmax = 50
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DIRECT INVERSE LAPLACE EVALUATION
DIMENSIONLESS DAMPING: b = 0.01 TIME: t =1
INTEGRATION PARAMETERS: g=0 = 35
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DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b= 0.1 TIME: t
INTEGRATION PARAMETERS: g0 R = 35
INTEGRAND FOR A TYPICAL VALUE OF X: X = 0.3
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DIRECT INVERSE LAPLACE EVALUATION

DIMENSIONLESS DAMPING: b= 0.5 TIME: t =
INTEGRATION PARAMETERS: g =0 R = 100
INTEGRAND FOR A TYPICAL VALUE OF X: X £ 0.3
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number of points: kmax = 60
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ANALYSIS OF SEDS-1 DYNAMICS FROM ON BOARD
INSTRUMENTATION

M. L. Cosmo* , G.E. Gullahorn, E.C. Lorenzini **, M.Grassi+
Smithsonian Astrophysical Observatory
Cambridge, MA 02138

Abstract

The data of the instruments on
board the SEDS-1 end-mass can be
used to verify models of the
dynamic behavior of long space
borne tethers. The purpose of this
paper is to estimate the end mass
orientation and validate the
numerical codes. Our survey is
limited to the analysis of only the
accelerometer data. Preliminary
analysis of some results is
presented. A series of three tension
pulses generated as density
enhancements 1is the tether
deployed are also examined using
both satellite and deployer data.

1. Introduction

SEDS-1 successful flight has
provided the scientific community
with valuable data on the dynamic
behavior of long space borne
tethers. These data can validate
theoretical models and check their
applicability. Furthermore the
elastic properties of long tethers in
space can be assessed and compared
to the laboratory tests run on the
ground.

SEDS-1 data consists of three
main sets:

- Deployer Data: number of spool

turns, deployment rate and the
deploying tension

* AIAA Member
**AIAA Senior Member

- Endmass Data: magnetic field,
accelerations and tether tension
vectors.

- Ground-based Data: radar and

optical observations of the
deployer, the end-mass and a radar
dipole located at the tether
midpoint.

The scope of this paper is the
study of the dynamics of space
borne tethers from the end mass
instrumentation data, namely:

1) Three-axis magnetometer to
measure the orientation of the end-
mass with respect to the
geomagnetic field

2) Three accelerometers to measure
non-gravitational accelerations

3) Three axis tensiometer to
measure the three components of
the tether tension and its torque.

The characteristics of the end-
mass instruments are listed in Table
1.

In the following, the
preliminary results of the analysis
of the end-mass instrumentation
data will be presented.

Thus far the effort has been
concentrated on:

+AIAA Member. Visiting Scientist also PhD Candidate at University of Naples,

Italy.
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- Estimation of end-mass orientation
- Low-tension deployment

- Tether longitudinal dynamics

2. Estimation of End- : :

In order to estimate the
orientation of a rigid body in space
two reference vectors are needed.
In our case only the magnetometer
was dedicated to such measurements
by using the geomagnetic field as
the reference. As second vector we
have used the "tether" vector.
Specifically, the direction of the
line connecting the end-mass to the
deployer has been compared to the
load cell unit vector.

For both sets of measurements
the end-mass orbital parameters are
needed in order to compute the
inertial components of the line
connecting the end mass and the
geomagnetic field. In our
preliminary analysis the results of
our computer program that SEDS-1
deployment have been compared to
the delta orbital track and tether
length and length rate from the
deployer data set. Table 2 shows the
orbital elements of the end mas at
the moment of the ejection. The
results of this fit are shown in
figures 1 where the time histories
of the end-mass magnetic flux,
height above the reference
ellipsoid, latitude and longitude are
shown, respectively. The agreement
with flight data is quite satisfactory.
It is also planned to compare these
data with the ground based data set
and those obtained from other
computer simulators and optimal

estimatorsl »2.

The two sets of observations can
be combined to yield the attitude
matrix A and therefore the three
euler angles. We use two algorithms

to estimate the end-mass
orientation: QUEST (Quaternion
Estimation) and TRIAD (algebraic
method).

The quest algorithm3 uses a set
of n observation at each time to
compute the attitude matrix A given
a quaternion q that minimizes in
the least square sense the so called
Wahba's cost function L(A):

N 2
L(A) = ; k Qi 'wk - AZkI
where:

n = number of sets of unit
vector observations

ak = weights = 1/c;k2

ok = measurement standard
deviation

wk = k-th set of unit vector
observation in the body
reference frame

vk = k-th set of unit vector
representation with respect to
the reference frame

It can be shown that the solution
that minimizes L(A) is also the
maximum likelihood estimate of the
attitude for the particular choice of

weights.

The TRIAD algorithm3, also

referred as the algebraic method>,
uses only two reference unit
vectors to determine the three Euler
angles. Even though this is not an
optimal method it can be easily
implemented to check QUEST results.
It can be shown that when there
are only two measurements, as in
our case, QUEST and TRIAD are
equivalent.



2.1. Magnetometer Error Analysis

The magnetometer error
Smag is given by three main
contributions: measurement error
Omeas, modeling error cmod and
orbital error oprp. -

The error budget of the
magnetometer measurement error
is as follows:

Linearity = +/- 0.5% FS = +/- 3
mGauss

Noise = +/- 1% FS = +/- 6 mGauss

Ripple Output = 10 mV rms = 2.4
mGauss

Stability = +/- 1% FS = +/- 6
mGauss

The total error omeas (rms) is
9.31 mGauss.

The strength and orientation of
the geomagnetic field is known
with high accuracy. In a case like
SEDS-1 the modeling problem plays
a minor role. Nevertheless an
estimate of its contribution can be
taken into account as a function of

the end-mass heightS:

0.4 (mGauss) = (R . h)3

where h is the height above the
ellipsoid expressed in km and R is
the earth equatorial radius.

The knowledge of the end-mass
position plays an important role in
computing the reference field. An
error in estimating the end-mass
position results in an error in the
reference magnetic field that can
be expressed as:

12
1.43x10° 54

2 2 2
JB 5 JB JB
o '(a—rJ "r*[%) ‘f’*(ﬂ %

where B is the reference magnetic
field and r, 9, ¢ are the end-mass
radius , colatitude and longitude,
respectively.

The magnetometer attitude error is

2 2
0.2 — o't;rb + Omoa + Grzrlms
mag — Bz

where BZ is the modulus of the
magnetic field.

2.2. Load Cell Error Analvsis

According to a NASA/LaRC
study® that takes into account
several sources of error, the
measurement error (RMS) of a load
cell is 7uV. Since the full range
corresponds to 5000 puV we obtain
for each scale of the load cell:

Slow =7 X 10°1/5000 = 1.4 X 10-4 N
Omed =7 X1 /5000 = 1.4 X 10-3 N
ohigh =7 X 10 /5000 = 1.4 X 10-2 N

No data on the instruments
biases is available yet, consequently
it is not taken into account,

For sake of brevity we do not
give here the expressions of the
error in measuring the "tether unit
vector" omegs and the error in
estimating the orientation of the
unit vector connecting the two end-

masses in the inertial frame corb’.

We can then write that the
tensiometer attitude error oT is:

02T= szeas + Gzorb +02mod



where omod, the modeling error,
takes into account that the line
connecting the two end platforms
does not coincide with the direction
measured by the tensiometer. In the
preliminary stage omod will be kept
constant and equal to 2.44 deg8.

The accuracies in determining
the attitude from the tensiometer
and magnetometer data are shown
in figure 2 for SEDS-1 deployment.
At the moment of this writing no
data are available to give a
preliminary estimate of the end-
mass orientation.

3. Early Deplovment Tether Dvnamics

In order to wvalidate our
theoretical models as well as
improve our understanding of
tether dynamics it is necessary to
go through the whole sets of data to
find correlations and be able to test
some hypotheses. Unfortunately
our survey will be limited to the
accelerometer data, being the only
validated set so far.

The accelerometer data provide
the basic information to analyze
SEDS-1 dynamics. However,
additional information on the end-
mass orientation and rotation rates
are needed in order to provide the
complete model.

The comparison between the
moduli of the acceleration measured
on board the end-mass and the
acceleration computed by the
numerical simulation is shown in
figure 3. The flight acceleration has
been averaged over 60 seconds in
order to reduce the periodic
rotational terms.

The overall agreement is quite
evident even though the fit needs
further refinement. It is likely that
the assumed tension profile is a
principal source of disagreement.

Several interesting features
have been observed on small time
scales. Figures 4, for example, show
the three accelerations at 100
second after ejection.

The arc tangent of the y and x
component is plotted in figure 5. We
can see that between 150 and 160
seconds the payload aligns itself
with the tether (X-Y plane) and
oscillates around that value with
amplitudes of about 30-40 deg.
Moreover the X-Y plane lies in the
orbital plane and the out-of-plane
component is mostly unaffected
oscillating around O with
amplitudes of about 0.002 m/s2.
After 180 seconds it looks as the
payload is going through phases of
tether slackness, or at least very
low tension and consequent
bouncing. Similar alternating
periods of slack and taut behavior
were observed on TSS-19. This
behavior seems to suggest how the
tether was being deploved.

4. Tension Pulses

Embedded in the SEDS tether
were three linear lumps of flexible
metal 3 m long at 400 m intervals.
When the tether containing these
lumps deployed, the tension
increased due to the increased
tether density, giving a nominally
square wave tension pulse which
propagated into the tether. This
pulse was detected by both the load
cell and the accelerometers on the
satellite. As will be seen below, the
four relevant measurements (the z
acceleration does not show the
pulses, being closely orthogonal to
the tether direction, and the =z
tension is not yet available) are
very nearly equivalent in form;
one example, the x acceleration, is
shown in Figure 6 for a period of
100 seconds containing all three
pulses. The pulses are clearly



distinct from the background

signal.

Visual inspection of Figure 6
seems to show some regularity in
the behavior following each pulse.
Figure 7 shows the three pulses
with both coordinates shifted so
that they appear stacked one on top
of the other. The structure is not so
apparent because of the expanded
time scale, but the similarities
remain: a sudden decline at about 6
seconds after the peak, lasting for 1
to 2 seconds, followed by a rise until
about 15 to 17 seconds after the
peak. Whether these regularities
are real or simply psychological
artifacts will need further analysis.

Figure 8 shows all four
measurements for each pulse, for
the four seconds surrounding the
peak. On this time scale the
individual samples (1/8 second) are
distinct. The four traces (the top
two are tension, the bottom two
accelerations) show closely similar
structure. Before the first pulse is
received at the satellite, note that
the two accelerations (and two
tensions) are very close, indicating
that the satellite is in the 45 degree
neutral hang angle. After, the
signals diverge, indicating a
departure from this attitude,
presumable due to the tension
pulse. Similar changes in attitude
occur across the other two pulses.
Since the four measurements are so
similar in character, we arbitrarily
choose one (the x acceleration) and
in Figure 9 superpose the three
pulses as in Figure 7, except with a
more detailed time scale.

To within the resolution of the
sampling, the appearance of the
pulses is quite similar: a fairly
sharp rise, no more than 3 samples
(378 s), a peak about 1 to 2 samples
wide (1/8 s), and a tail of
exponential appearance, with a
time constant of about 4 samples

(1/2 s). Before ascribing the
measured pulse shape to tether
material damping, we should
eliminate other possibilities. One
such is suggested by Gullahorn and

Hohifeld10, who show that even in
the absence of damping the finite
mass of the satellite will result in an
impulse response function (IRF)
with a sharp rise and exponential
tail. The decay constant is

1=M/uc

where M is the satellite mass, ¢ the
speed of sound in the tether and p
the tether linear density. For
nominal SEDS values of M = 26 kg,
EA=1.5x104N,p=3.3x10%kg m’],
we get 1 = 12 s. Clearly this effect
cannot contribute to the structure
seen in Figure 7.

Another possibility is that some
effect causes the pulse injected at
the deployer to be broadened
bevond the expected width: the
pulses in Figure 7 are 31.1 s apart,
corresponding to lump separation
of 400 m; so 3 m lumps should give a
pulse width of (3/400) 31.1 = 0.23 s.
There is a tension measurement at
the deployer, but the data is
averaged to give a sample rate of 1
s. However, two brief "snapshots"
were at a high sampling rate, 0.002
s; one snapshot covered the period
when a lump was being deployed,
corresponding to the first pulse.
The snapshot data has some very
short scale, large amplitude,
oscillation which makes direct
plots of little use (Figure 10a). If we
average over 25 samples, the pulse
is easily discerned at fairly high
resolution, and is seen to be close to
a square wave of width 0.2-0.3
(Figure 10b). Now if we average
over 62 samples, i.e. over 0.124 s,
this gives data at very nearly the
sample rate (0.125 s) of the satellite
data. These are both plotted in
Figure 11, and clearly some of the



apparent structure of the satellite
measurements could be due to the
sampling; but also clearly, the
slightly broadened rise time, and
the exponentially decaying tail, are
not in the input signal, no matter
how sampled. The most likely
explanation is that the pulse
structure is due to transmission
effects in the tether, either
nonlinear elasticity or damping.
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Table 1. End-mass Instrumentation
Range Resolution
Accelerometer
Low Scale +1 mg 8.3 ug
Medium Scale +5 mg 42. ug
High Scale +50 mg 0.42 mg
Tensiometer
Low Scale +100 mN 0.83 mN
Medium Scale +1 N 8.3 mN
High Scale +10N 83 mN
Magnetometer +600 mGauss 4.7 mGauss
Date March 30, 1993
Time 4:12:00
Right Ascension (deg) 27.26
Inclination (deg) 33.97
Argument Perigee (deg) 182.64
Semimajor axis (Km) 6832.14
Eccentricity 0.0401
Time since Perigee (sec) 2661.28
Ejection velocity (m/sec) 1.62
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11.0 DYNAMICS AND CONTROL OF SEDS-II
Figure Captions

Fig. 11.1 Deployment trajectories of the satellite with respect to the Delta second
stage at various stages during the convergence of the optimization

process for finding reference deployment profiles.

Figs. 11.2(a-c) Reference profiles: (a) length (m), rate (m/s), and brake (turn); (b) spool
turn (turn), spool rate (turn/s), and brake (turn); and (c) reference
simulation output for perfect reference conditions (i.e., no aerodynamic,

massless tether, no sling/scrub transition, no Delta drift): in-plane angle,

swing velocity, and tether tension.

Figs. 11.3(a-b) Deployment dynamics of SEDS-2 with an "additive” (see text) feed-
forward/feedback control law for: (a) reference minimum tension T = 30
mN; (b) To = 10 mN; and (c) Tg = 40 mN.

Fig. 11.4 Block diagram of SEDS-2 control law.

Fig. 11.5 Response of low-pass filter for a = 1, different values of ¢ and sampling
time T =1s.

Fig. 11.6 The filter of SEDS-2 is tested on the flight data of SEDS-1 to smooth out

the velocity. The filter parameter are: a =1,¢=0.125,and T =1 s.

Figs. 11.7(a-b) Dynamic response for reference case with "proportional” (see text)
control law: Tg =30 mN along the whole tether; annulus solidity = 0.96;
area exponent = -0.8; and inertia multiplier = 3. Tether is massive, Delta
drifts 2000 s after end-mass ejection, aerodynamic drag is present,

sling/scrub transition occurs at about L = 18.8 km.

Figs. 11.8(a-e) Sensitivity of system response to uncertainties affecting the tension
model. Deployment dynamics for values of the minimum tension
ranging from 10 m N to 60 mN.

Fig. 11.9 Maximum libration amplitude at end of deployment for: (1) an ejection
velocity = 1.64 m/s (SEDS-2 springs); (2) an hypothetical ejection
velocity = 2.4 m/s (PMG springs); and (3) SEDS-1.
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Figs. 11.10(a-b) Sensitivity to uncertainties affecting the brake response as follows: (b)

Figs.

Figs.

11.11(a-b)

11.12(a-b)

Fig. 11.13

Figs.

Figs.

Figs.

Figs.

Figs.

11.14(a-¢)

11.15

11.16

11.17

11.18(a-b)

the friction coefficient is 0.1, i.e. 50% lower than the reference value of
0.18; and (b) the friction coefficient is 0.26, i.e. 50% higher than the

reference value.

Sensitivity to tension random fluctuations as follows: (1) an additive
component that fluctuates +2 mN with respect to the baseline value; and
(2) a multiplicative component that fluctuates +50% of the baseline value.

Sensitivity to saw-tooth noise affecting the tension. Saw-tooth noise for
L 2 17 km, with a fluctuation of 0.5 N and a period of 30 s.

Maximum libration amplitude at end of deployment for: (1) Vo = 1.64
m/s, 8p = -4.7° (nominal conditions); (2) Vo = 1.56 m/s, 8y = -6.7°, f =
0.1, and Hapo- Hper = 50 km (conditions of maximum dispersion); and
(3) SEDS-1.

Comparison simulation between the SAO and NASA/MSFC computer
codes for the reference case (Tg= 30 mN).

New (January 1994) baseline case with temperature T = 13 °C and the
following model parameters: Tg = 12.5 mN for 19.7-km new and
cleaned tether and To = 70 mN for 300-m old tether at the end; annulus
solidity = 0.9424; area exponent = -0.6; inertia multiplier = 4.1.

Same parameters as above except for Tgp = 15 mN for the new tether
(cold case with T =2 °C).

Same parameters as above except for Tg = 8 mN for the new tether (hot
case with T = 35 °C).

Effect of heavy tensional noise on the dynamics according to the new
(nominal) baseline. The noise structure is as follows: an additive
component of £10 mN; a multiplicative component of +50%; and a saw-
tooth noise of 0.5 N with a period of 30 s active for L > 17 km.

At iGN
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Figs. 11.19(a-b) Flight data of SEDS-2: (a) raw tension from the deployer's tensiometer;

and (b) filtered tension after the end of deployment. From the analysis of
the filtered tension, the maximum libration amplitude at the end of

deployment is 3.2 deg.

Figs. 11.20(a-b) Flight data of SEDS-2: (a) raw tether exit velocity from the turn counter

(one turn counter was declared failed at t = 2200 s); and (b) raw tether

length.

Figs. 11.21(a-b) (a) 10-s average of tether velocity after having eliminated the spurious

velocity values > 10 m/s due to the turn counter's failure; and (b) in-
plane angle estimated by feeding the 10-s average of tether velocity to the
SEDS-2 deployment simulator. According to this estimate, the
maximum libration amplitude at the end of deployment is 4 deg.

Figs. 11.22(a-b) (a) 100-s average of tether velocity after having eliminated the spurious

Fig. 11.23

velocity values > 10 m/s due to the turn counter's failure; and (b) in-
plane angle estimated by feeding the 100-s average of tether velocity to
the SEDS-2 deployment simulator. According to this estimate, the
maximum libration amplitude at the end of deployment is 2 deg.

The actual brake turns from the SEDS-2 flight are compared to the

refrence brake profile.
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11.1 SEDS-2 Closed-loop Control Law
11.1.1 Control Scheme

Difficulties in devising a control law which provides small librations at the end of
deployment stem from the stringent hardware limitations of the SEDS system. Namely: a
brake with highly non-linear characteristics (i.e., exponential response); a deployer which
can not reverse the deployment velocity; a Z-80-based computer with limited computational
speed and 28 Kbytes of memory available for the control software; only one sensor with a
repeatability adequate for a feedback control loop, i.e. a turn counter which measures the
number of tether turns deployed from the spool with an accuracy of one turn.

The goal of the control law is to control a non-linear plant both in terms of dynamics
and actuator response in the presence of uncertainties affecting the actuator and the plant.
The performance goal is a libration of less than 10 deg at the end of deployment for large
(and unpredictable) variations of the tension values. One additional requirement calls for
the activation of the brake only after the first kilometer of tether has been deployed
because, since the tether tension is too low at short tether lengths, an over braking could
stop the deployment at short range.

The strategy followed to derive the control law splits the control problem into two
parts: (1) finding the solution of a two point boundary value problem; and (2) developing a
local linear feedback controller.

The solution of the boundary value problem, by means of a parametric optimization,

provides the reference length Lycrand velocity Lier profiles and an associated reference
brake profile By (reference control input) [1,2]. The reference brake profile is the non-
linear part of the control law which is fed forward to the actuator. This non linear part
enables a linearization of the perturbed response of the system around the non-linear
solution. For this reason, this technique of splitting the control law into a feed-forward
non-linear component and a linear feedback is sometime called feedback linearization.

The linear feedback control, which is the subject of this report, is a PD controller
which forces the system to follow the reference length and velocity profiles by canceling
the length and velocity errors with respect to the reference.
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11.1.2 Implementation of Control Law
Tension Model

The tension model for the SEDS deployer was derived empirically from the analysis of
deployment tests on the ground, supported by physical considerations. In summary the
tension model consists of a static component Tg (the minimum tension) and a dynamic
component, proportional to the square of the deployment velocity. The actuator (brake) is
modeled as an exponential function eB that multiplies the input tension. A second
exponential function models the friction between the tether and the exit guide. See eqn.

(9.1) in Section 9.2 for the mathematical expression of the tension model.

Reference Profiles

The feed-forward part of the control law is the reference brake profile which enables

the system to follow the desired length L and speed Lycr profiles under reference

conditions and a reference tension model.

The reference profiles are computed with an iterative process aimed at minimizing the
value of a cost function at the end of a deployment of desired duration. The optimization
process is briefly outlined in the following. The brake profile is expressed in terms of a
finite (and small) numbers of parameters, for example by means of a cubic spline with a
few fixed points. A cost function is constructed in such a way that its value approaches
zero for the desired values of the state vectors at the end of deployment. An optimization
routine, suitable for minimizing generic (non-smooth) functions, is adopted to search for
the optimal set of parameters of the brake profile. For each trial of brake parameters, the
numerical integration of the deployment trajectory enables the computation of the cost
function at the end of deployment. The optimization routine selects different sets of brake
parameters based on the trend of the cost function from iteration to iteration. Figure 11.1
shows the convergence of the optimization routine by depicting selected deployment
trajectories during the iteration process. The minimum tension and the target state vector
for this particular optimization run were as follows: Tg= 20 mN, Xgoa1 = 0 m, Zgoq 20 =
km, X=0 my/s, Z = 0.8 m/s where X, Z and X, Z are the components of the satellite
displacement and satellite velocity with respect to an local horizontal-local vertical (LH-LV)
reference frame centered at the Delta second stage. For a more detailed description of the

optimization process see Ref. [1] and Ref. [2].
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The reference profiles Lyef, Lyor, and Brer are memorized in the on-board computer in a
3x900 array of data (reference table) in fixed point format with a three digit accuracy. The
reference table for the flight software of SEDS-1I was derived for the numerical values of
the system parameters shown here below. These values were based on the flight data of

SEDS-1.

Tension model and system parameters

To = Minimum tension = 30 mN
A = Tether annulus solidity = 0.96

E = Area exponent = -0.8

I = Inertia multiplier =3

m = Satellite mass = 259 kg
tp = Deployment duration = 6,500 s

Orbital parameters and initial conditions

H = Orbital altitude = 350 km
6o = Ejection angle = -4.7 deg (backward wrt LV)
Vo = Ejection velocity = 1.64 m/s

The Lyet, chf, and Brer profiles are shown in Figs. 11.2(a). The flight software
reference profiles, which are expressed in terms of spool turns and turn rates, are shown in
Fig. 11.2(b). The simulation output, i.e. in-plane libration angle 6, swing rate 6 and tether
tension, for perfect reference conditions (i.e., no aerodynamic drag, massless tether, no

sling/scrub transition, no Delta drift) are shown in Fig 11.2(c). For a tabulation of SEDS-
II flight reference table, called Ref1_14June93, see Ref. [3].
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The following numerical values have been adopted for nominal orbital and system
parameters of the SEDS-2 flight: circular orbit at an altitude of 350 km (orbital rate Q =
1.144x10-3 rad/s); orbital inclination = 30 deg; end-mass m = 25.9 kg; tether linear
density p = 0.33 kg/km; tether diameter = 0.75 mm; tether stiffness EA = 15,000 N; tether
axial viscosity E'A = 1,000 N-s; and tether final length Leng = 20 km. The end-mass is
ejected with a speed Vo= 1.64 m/s at an angle 8p = -4.7 deg (backward of the downward

local vertical).
Feedback

By following the reference Bref profile, an ideal system without any errors or
disturbances and under reference initial and orbital conditions will follow the reference
length and length rate profiles and hence reach the end of deployment with a zero libration
amplitude in a given time. However, while the ejection conditions are known within a
+5% error, much larger uncertainties affect the tension model and the brake response. A
feedback is needed in the control law to make it more robust by correcting for the effects of

the uncertainties in the tension model and actuator response.

The feed-forward part of the control law (without feedback) has the form B = Bres
where Bef is the reference brake profile. If uncertainties and/or errors are present, the
system will not follow the length and length-rate profiles and consequently the libration
response will be different from the desired response. One way to compensate for the
effects of errors and uncertainties is to implement a feedback controller that forces the
system to follow the reference length and length-rate profiles under off-reference

conditions.

The classic approach, encountered in the literature [4], for implementing the feedback
control law is to add the feedback controller to the non-linear component (i.¢., to the feed-

forward component) of the control law. Consequently, the formulation of the control law

would be:
B =Bef+F (11.1.1)
F = k{SL + kpdL (11.1.2)
SL =L - Lyef (11.1.3)
SL=L-Lpr (11.1.4)
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where F is the feedback and 8L and 8L are the length and length-rate errors with respect to
the reference respectively. Because of its mathematical formulation we call this control law
"additive". Results from simulations carried out with the additive control law are shown in
Figs. 11.3(a-b) for off-reference tension values of 10 mN and 40 mN. When compared to
the analogous curves shown in Figs. 11.8 relevant to the control law formulation
(explained later on) adopted for SEDS-2, the simulation results clearly show that the
additive control law is unable to provide a system response robust enough with respect to

variations of the tension model parameters.

Another formulation of the control law was attempted whereby the feedback corrects
the reference brake profile proportionally to the instantaneous value of that profile as

follows:
B =B (1 +F) (11.2)

We call this control law "proportional” because the feedback is proportional to the

reference brake profile.
Control Gains

The equations of motion for a dumbbell system with a massless and straight tether are

as follows
0 +27(6-Q)+5Q25in(20) =0 (11.3.1)
'L'—L(G—Q)2—LQ2(3cos2(e)—1)=—%°f (11.3.2)

where the tension Tyef is given by eqn (9.1) of Section 9.2. Eqns (11.3) can be
linearized around the solution provided by the reference profiles to yield:

- Lref «; Lref , & 2 . -

(11.4.1)
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SL +2 alﬁef SL — [62ef - 26ref Q + 302 c0s2(Byef)] SL

re

where 8Tg represent the departure of the minimum tension from its reference value and a =
Ip (1 - AL/Lepg)E. In deriving eqns (11.4), the dependence of the tension model of eqn.
(9.1) on the variables 6 and L was neglected by replacing the relevant terms with their

average values. Moreover, since 0B << I,
eB = e(Bref + 8B) = ¢Bref (] 4 §B)
For the additive feedback of eqn. (11.1.1),
0B =F (11.5.1)
and for the proportional feedback of eqn. (3),
OB =B F (11.5.2)

After defining A = L/Lyef and T = 8To/Tref, eqn. (11.5.2) can be expressed in a non-

dimensional form as follows:

1 Thref

8}L+d16X+dzsx+d389+d459=-mme(aB+61—) (11.6)
S|
where d1=2%f:—f L (1- AL/LengE
dy = 261ef Q — 302 c0s2(Bref) — 0%ref (11.7)

d3 = 6Q2 cos(Bref) sin(Bref)
dg = 2(Q — Brer)

After numerical evaluation and considering that 86 = Q30, the last two terms on the

left hand side of eqn. (11.6) can be neglected with respect to the other terms for the
expected ranges of the variables in question. For the reference tension model 6t =0, and
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after neglecting the terms mentioned above and substituting eqn. (11.5.2), eqn. (11.6)
yields

8X+(d1+BLm—°f]£r—;;K2)8X+(dz+l%ef{—:—gKl)5x=o (11.8)

In first approximation, this equation can be used to compute the non-dimensional
control gains K| = Lyefky and xp = Liegky disregarding, for the time being, eqn. (11.4.1).
Since eqn. (11.8) has variable coefficients, it must be analyzed at frozen times during

deployment in order to estimate the dynamic response analytically.

The mid-deployment time of SEDS-2 is t = 3250 s. At this time, the values of the
parameters in the equation are as follows:

d 8x10-8
d; = 4x106 (11.9)

Bref Tref _ 6
m Lo 4x10

At frozen time, eqn. (11.8) is a canonical second-order equation. Consequently, the

rotational frequency, damping ratio, and time constant are respectively

_ 1 Trer 122
co-(dz +erefK1)
_ 1 Tref
£ = zm(dl * mexz) (11.10)
Y:L
2t

A time constant Y = 100 s and a damping ratio £ = 0.7 were selected for the control
system, leading to k= 12.76 and x; = 2500 or equivalently k = 2x10-3 N/m and k = 0.4
N/ms-1.

Extensive simulation runs have indeed verified the validity of the value selected for kj
while the value of k; has been reduced to 0.2 N/ms-! in order to make the control system
less susceptible to the abrupt tension variations at the end of deployment caused by the

mechanization of the deployer (i.e. two-way transitions between sling and scrub modes for
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low deployment velocity and small diameter of the spool). In summary, the values adopted
for the control gains of SEDS-2 are

k1 =2x10-3 N/m (position gain) (11.11.1)
kp = 0.2 N/ms-! (velocity gain) (11.11.2)
Block Diagram

The flight control software is based on an outer loop sampled at every 8 seconds and
an inner loop sampled at every 1 second. The output of the turn counter (see Fig. 11.4),
sampled at every second, is filtered (see next subchapter) and the turn count rate is
computed by taking the numerical derivative of the filtered turn counts over 8-s intervals.
This process provides a smooth turn count rate despite the high noise level of the turn count
signal. At every 8-s, the smoothed turn count and turn rates are compared to the reference
turn count and rate for computing the correction (feedback) to apply to the reference brake

Bref profile in order to track the reference length and rate profiles.

It is important to stress that the control software is based on number of turn counts and
turn count rate as opposed to length and length rate. Because of the spool geometry, the

two set of variables are linked by quadratic relationships as follows:
L=a; T2 +ay T+ a3 (11.12.1)
L=2a; Tc+a (11.12.2)

where T is the number of turn counts. Consequently, the derivatives of eqn. (11.1.2)

with respect to 8L and 3L yield the relationships between the L-based control gains and the

turn-based control gains as follows:
Ki=kj(az+2a; Tp) (11.13.3)
Ko=kp(ag+2a; Ty (11.13.2)

where K| and K5 are the turn-based control gains which appear in the turn-based

corrective term (feedback)
F = AT, + AT, (11.14)
where AT, = K| 8T, and AT, = K 8T,.
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Once the individual components of the feedback AT, and AT, are computed, they are

checked for saturations and thresholds according to the following logic (similar expressions

hold for ATC):

if: abs (8T¢) < 8Tyre

then: ATc=0

elseif: abs (8T¢) > 6Ty

then: ATc = K| (8Tgy - 8Tye) sign (8T¢)
else: AT = K (abs (8T¢) - 8Tre) sign (8T¢)

where 8T,y and 8Ty are the saturation and threshold values respectively.
Once the correction term (eqn. 11.14) is computed, it is also checked for saturations:
if: F<-1 then F=-1
if: F>Fgy then F =Fgy

where Fgy (i.e., the upper bound of the feedback) limits the control authority. For SEDS-

2, Fgq, was equal to unity.
Finally, the brake command is computed according to
B =Bref (1 +F) (11.15)
The number of allowable brake turns B is also limited as follows:
if: B > Binax then B = Bjax
where for SEDS-2, By is equal 6.
Filtering

Deploying from a passive spool with a tether rubbing on various metal surfaces is
dominated by the stick-slip mechanism as it is easily inferred from the data of the SEDS-1

flight. This mechanism gives rise to an output signal from the turn counter with a high
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noise level. Effective filtering is, therefore, important in order to eliminate the high
frequency components from the turn counter output signal and consequently compute a

noise-free turn rate by means of numerical derivation.

The filter adopted in this control scheme is a recursive filter with the following
formulation [5]:

y(i+1) = a y(i) + c [u(i+]) - a y(i)] (11.16)

where u(i) is the measured value at the i-th step, y(i) is the filtered variable at the same
step, a determines the type of filtering and ¢ the cut-off frequency. In particular, fora =
-1, the filter in eqn. (11.16) is a high-pass filter and for a = 1, (which is the value we will
adopt from now on) it is a low-pass filter.

The amplitude of the filtered variable is given by
M=c[a? (c- 1)2 +2a(c - 1) cos(wT) + 1172 (11.17)
where T is the sampling frequency of the measured variable.

Figure 11.5 depicts the attenuation provided by the filter for T =1 s, @ = 1 (low-pass),
and different values of the parameter ¢. Specifically, for ¢ = 0.1, the cut-off frequency
(defined as the frequency at -3 dB) is about 0.02 Hz. A cut-off frequency of 0.02 Hz is
adequate for SEDS-2 since, from experimental data, the lowest-frequency noise component
is at about 0.033 Hz.

Moreover, the performance of the filter and the velocity computation routine (by
numerical derivation) was tested on the deployment data of SEDS-1. In Figure 11.6, the
deployment velocity, obtained through filtering of the turn count data, is compared to the
unfiltered velocity. The filter parameters are those adopted for SEDS-2 as follows: a = 1, ¢
=0.125, T=1s.
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11.1.3 Robustness of Control Law
Reference Case

The simulation runs have been carried out with the DUMBBELL computer code which
has the following characteristics: in-plane dynamics, generic orbit, point end-masses,

aerodynamic drag, spherical gravity model, straight and visco-elastic tether.

The dynamics for the reference case is shown in Figs. 11.7(a-b). In the reference
case, the minimum tension is equal to 30 mN and it is assumed constant along the entire
tether length. The following values were adopted for the other parameters of the reference
tension model: annulus solidity = 0.96, inertia multiplier = 3, and area exponent = -0.8 [6].
The reference case does not have perfect reference conditions as opposed to what was
assumed for the simplified model for the derivation of the reference profiles. The reference
case adopts more realistic reference conditions: the tether is massive, the Delta second stage
drifts from its flight attitude 2000 s after the end-mass ejection, the aerodynamic drag is
present, the sling/scrub transition occurs for a tether turn rate < 13 turn/s at about L = 18.8
km and t > 5,700 s.

The tension model is one of the main source of errors because it is affected by large
uncertainties due to the unpredictability of frictional forces in the deployer. Specifically,
values of the minimum tension can range, most likely, between 10 mN and 40 mN while
the friction coefficient f can exhibits variation of £50% with respect to the most likely vale
of 0.18. Since the friction coefficient appears in the argument of an exponential function
(i.e. the brake multiplier eB), it has a dramatic effect on the tension. For the average
number of brake turns of 3, a £50% change of the friction coefficient corresponds to a
+500% variation of the tension. For the maximum number of brake turns of 6, a 50%

change of the friction coefficient corresponds to a +3000% variation of the tension.

For the reason above, it is important to demonstrate the robustness of the control law

with regards to large uncertainties in the tension model and the actuator response.
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Sensitivity to Uncertainties in the Tension Model

In this subsection we investigate the sensitivity of the SEDS-2 control law to
departures of the tether tension from the baseline model.

- Specifically, for the values of deployment velocity of SEDS-2 (< 6 m/s), the dominant
contribution in the tension model is from the static tension Ty. Figures 1 1.8(a-e) show the
dynamic responses during deployment for static tensions ranging from 10 mN to 60 mN
(excluding the reference tension of 30 mN shown in Figs. 11.7). In Figure 11.9, the
maximum libration amplitudes of SEDS-1 and SEDS-2 at the end of deployment are shown
vs the static tension Tg. The control law of SEDS-2 provides a maximum libration
amplitude that ranges between 2 deg and 10 deg for 10 mN < Tg< 45 mN. The
deployment would stop at short range (< 1 km) without resuming for a static tension = 65
mN.

The drop-off of the control law performance for static tension > 45 mN is due to lack
of initial momentum (i.e., a low ejection velocity) rather than lack of robustness of the
control law. The brake can only slow down the deployment velocity and the gravity
gradient is not able to speed it up for high values of the static tension if the initial
momentum is insufficient. Consequently, if the ejection velocity is small and the static
tension is high the brake can only command the brake not to intervene. The robustness of
the control law to variation of the static tension is clearly demonstrated by the curve in Fig.
11.9 relevant to an ejection velocity of 2.4 m/s (PMG-type of ejection mechanism). In this
case the drop-off in the performance of the control law is for Tg > 60 mN while the
deployment would stop at short range for Tg > 95 mN.
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Sensitivity to Uncertainties in the Actuator Response

The response of the brake is also highly uncertain as pointed out before. A change in
the brake effectiveness is best modeled as a variation of the friction coefficient. Figures
11.10(a-b) show the dynamic response during deployment for values of the friction
coefficient ranging from 0.1 to 0.26. The baseline value of the friction coefficient is 0.18.
Independent experimental measurements of the friction coefficient of Spectra-1000 on
Aluminum were carried out at the "Staat! Materialpriifamt fiir Textilstoffe" in Reutlingen,
Germany in June 1993. The tests were directed by Dieter Sabath of the Technical
University of Munich. The tether was a sample of the flight tether (the new tether before
cleaning) and the rubbing material was the actual brake post of the SEDS deployer. The
tests were done at two different temperatures T of the tether while the brake post was at the
room temperature of 23 °C. Measured values of the friction coefficient f were as follows: f
=0.15fort=0°C and f=0.16 for T = 15.5 °C. A detailed report on the friction tests is in

Appendix B of Ref. [3].

The conclusions from the sensitivity to uncertainties affecting the brake response is
that variations as high as £50% with respect to the baseline value of 0.18 for the friction

coefficient still lead to a maximum libration amplitude < 10 deg at the end of deployment.

Sensitivity to Random Noise

In order to test the effect of broad-band random noise upon the control law, noise is
superimposed on the tether tension. Specifically, the structure of the tension affected by

noise is as follows:

where T is the noise-free tether tension, N, and Ny, are broad-band random noise
components, and ST is a saw-tooth, low-frequency noise component. Nj and Np are
generated by zero-bias white noise routines which have been filtered (with a high-pass
filter) to eliminate the noise components with a frequency < 0.35 Hz. If this frequency is
interpreted as the number of turns per second inside the deployer, 0.35 turn/s corresponds

to a tether exit speed of roughly 0.15 m/s which is rarely encountered.

This strategy of filtering the white-band noise was adopted in order not to introduce
unrealistic low-frequency noise components. The noise component with the lowest

frequency is represented by the function ST which models the fluctuations, observed
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during the SEDS-2 deployment tests on the ground and also in the SEDS-1 flight data,
produced by the parallel winding of the tether on the spool. For SEDS-2, parallel winding
starts at a tether length of about 17 km and the period of the associated noise component is
about 30 s.

A tension fluctuation (as modeled in eqn. 11.18) produces a speed and hence a turn
count fluctuation. The tension is, therefore, the most effective way of introducing noise
into the system dynamics.

As mentioned before, the tether tension is assumed to be affected by an additive and a
multiplicative noise component. Specifically, the additive noise component is important in
the early phase of deployment when the tension is low. This component represents the
effect of the stick-slip which dominates the low tension deployment up to a tether length of
about 2 km. The multiplicative term represents the increase of tension fluctuations

proportionally to the instantaneous value of the tension at later stages of deployment.

In the case shown in Fig. 11.11(a-b), the additive noise component is #2 mN and the
multiplicative component fluctuates +50% with respect to the baseline value. Unbiased
noise components were adopted because the effects of biases in the tension model are better
represented by a variation of the minimum tension and variation in the brake effectiveness
are better represented by variations in the friction coefficient (see relevant subsections of
this report). In general, relatively high levels of random noise do not affect appreciably the

system performance during deployment.

When the tether winding on the spool switches from universal (criss-cross type) to
parallel, the tension fluctuations are dominated by a low frequency noise best described by
a saw-tooth function. From deployment tests on the ground of SEDS-2, the amplitude of
the tension fluctuation is conservatively less than 0.5 N with a period of roughly 30 s.
The parallel winding starts at a tether length of about 17 km.
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The effect of the saw-tooth-shaped noise was simulated separately from the random
noises and the results are shown in Figures 11.12(a-b). Since tension fluctuations
influence the tether speed, the response to tension fluctuations is a test of the effectiveness
of the filter in the control loop. In this particular control system which lacks a
speedometer, the performance of the filter is especially important because, since the speed
is computed from numerical derivation of the turn count, it is very sensitive to noise that
affects the turn count. The most damaging noise components are the low-frequency

components such as the saw-tooth noise.

The plots show that the recursive filter is very effective in abating the low-frequency
noise and the filtered turn rate exhibits a smooth behavior. In conclusion, the deployment

response is not significantly affected by this low-frequency noise component.
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Combined Effect of Noise and Errors

Besides the uncertainties affecting the minimum tension and the brake response
(modeled as a variation of the friction coefficient), the ejection velocity and direction also
affect the final libration amplitude. The reference profiles are in fact derived for the
nominal set of values for the initial conditions and any deviations from those values imply a
non-null final libration. An orbital ellipticity also forces a non-null libration amplitude
because the eccentricity pumps the libration through variations of the in-plane gravity
gradient torque at the orbital frequency. Moderate value of eccentricities, however, have a
weak effect on the libration. All these contributions to a non-null final librations are
combined in the most destructive way to produce the dispersion plot shown in Figure
11.13 where the final libration amplitude is shown vs the minimum tension for two cases
as follows: (1) nominal conditions V¢ = 1.64 m/s, 80 =-4.7°, f = 0.18, 350x350 km orbit;
and (2) off-nominal conditions Vo= 1.56 m/s (5% less than nominal); 00 =-6.7° (-2° with
respect to nominal), f = 0.1 (50% less than nominal), and an altitude difference between
apogee and perigee of 50 km. The boundary values adopted for the dispersion of orbital
and other parameters are representative of the system expected performance.

The plot in Fig. 11.13 clearly shows that the worst possible combination of
uncertainties and errors can degrade the control law performance by increasing the final
libration amplitude by as much as 5° over the expected span of minimum tension values
(i.e., 10 mN < Ty < 45 mN). However, the worst possible combination of uncertainties is
unlikely to occur.

11.1.4 Validation of SEDS-2 Control Law

A validation of the simulated performance of SEDS-2 con&ol law was carried out by
means of test-case simulations run in parallel at SAO and NASA/MSFC [7]. Since the
computer codes at SAO and NASA/MSFC are completely independent, this comparison
provides a comprehensive test of the control law and the simulation software. In
particular, the specific code used to develop the SEDS-2 control law at SAO assumes the
tether to be straight while the NASA/MSFC computer code models the bowing of the
tether. A successful validation, therefore, acquires the additional meaning that the bowing
of the tether and the additional vibrational modes have a negligible effect on the
performance of the control law. Another, less important, difference between the two codes
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involves the gravity model: the SAO code used for SEDS-2 has a spherical gravity model
while the NASA/MSFC code has a Jy + J» gravity model. This difference accounts for the
small discrepancies in the plot of the tether libration angle.

The simulation results for the most important variables from the two computer codes
are shown in Figures 11.14(a-e). This simulations adopt the reference values of the

parameters as indicated in Section 11.1.2.

The results from the SAO simulators were also compared to the results obtained by
Logicon Control Dynamics which are reported in Ref. [8]. In this case, the comparison
was qualitative because it was based on the analysis of plots, rather than files, relative to
same simulation cases. Unlike the comparison with the NASA/MSFC code, the
comparison covered not only the reference case but also the low-static-tension and the high-
static-tension cases. The agreement between the results is impressive with maximum
differences between the libration angles from the two codes of less than 1 deg.

11.1.5  Simulation of latest baseline deployments

The latest configuration of the flight tether consists of 19.7 km of the new (cleaned)
tether and 300-m of the old (SEDS-1 type) tether spliced to the new tether at the deployer
end. From the deployment tests conducted on the ground and analyzed by NASA/MSFC,
the most likely values of the static tension for the new (cleaned) tether are as follows: T =
10-15 mN for a temperature of 13 °C (55 °F, nominal case); Tg = 10-15 mN for a
temperature of 2 °C (36 °F, cold case); and Ty = 8-10 mN for a temperature of 35 °C (95
°F, hot case). The old tether, instead, exhibits a rather high and uncertain static tension,
estimated, at the time of this writing, at 40-100 mN. The tension model parameters have
also been slightly modified as follows: annulus solidity = 0.9424; area exponent = -0.6;
and inertia multiplier = 4.1.

The new tension model parameters do not affect significantly the control law and the
deployment response. The addition of the 300-m old tether segment at the end of the new
tether, however, alters the deployment speed profile in the last phase of deployment.

The new parameters are adopted for the new baseline simulations as explained in the

following.

137



60

|
- O -
<

(3aq) uorjeaql] aue(d—Ul

Figure 11.14(a)

138

6000

4000

Time (s)

2000



llllllllllllllll
R
— \\.“\
B .
—— v\'\\ ——
\,\
| ‘\\\\\
\.\
L \\
\
\
- \ _
\\\
| '\'
A
\
\\
\\.
- ‘\
\
\‘\
IIII'IIIIIIII'IIII,
- @) - W )
Q2 ~— -
(u) yrdueT Jayjsy

Figure 11.14(b)

139

6000

4000

Time (s)

2000



‘\\\\
~

I | | l ‘ 1 l |

< oV o
(s/u1) peeds J8ujef
Figure 11.14(c)

140

@)
-
O
©
8
Sn
-q-‘v
:
;‘
o
-]
@)
a2



|

P T T T T T T T T T T T [ T T T T 1 T T T

llll’[llJ,llllllllI'III,I

I

o

< ™ N —

(N) uolsus], Joyjs[

Figure 11.14(d)

141

-

6000

4000

Time (s)

2000



(—) suany, a3eld

Figure 11.14(e)

142



Simulation results for the nominal case are depicted in Figures 11.15 in which a static
tension of 12.5 mN was adopted for the new tether and 70 mN for the last 300-m old
tether.

Results for the cold case, with Tg = 15 mN for the new tether and 70 mN for the old
tether, are shown in Fig. 11.16. Results for the hot case. with To = 8 mN for the new
tether and 70 mN for the old tether, are shown in Fig. 11.17.

In conclusion, the addition of the old tether does not affect the libration response of the
system during deployment. It does affect significantly the tether speed profile in the last
phase of deployment because of the abrupt change of the tether minimum tension (from
roughly 10 mN to 70 mN) at a time when a high number of brake turns is applied. The
control law compensates by reducing the number of brake turns by 1.5 turns. Deployment
comes to a stop at about 19.78 km and t = 6,560 s when the brake is ramped up.

Finally, a simulation was run to show the effect of heavy tensional noise on the new
nominal case. The tension is assumed to be affected by noise structured as follows: an
additive component of +10 mN, a multiplicative component of +50% (the spectra of these
two components is cut below a frequency of 0.33 Hz), and a saw-tooth noise of 0.5 N
with a period of 30 s active for tether lengths 2 17 km. Figure 11.18(a-b) show the
simulation results. The control law performs rather well in the presence of high noise
levels: the final libration amplitude is almost unaffected with respect to the (latest) nominal,
the final velocity is similar to nominal (in which the final phase is significantly impacted by
the presence of the 300-m old tether segment), and the brake actuation is not excessively

jittery.

One important remark, the term "baseline” should not be confused with the term
“reference”. The non-linear control law adopted for SEDS-2 necessitates reference profiles
as explained before. The reference profiles for SEDS-2 were derived according to the
values of parameters indicated in Section 11.1.2. The most important of this reference
parameter is the value of the static tension. The reference value of the static tension (To =
30 mN) is closer to the baseline value of the cold case than to the baseline value of the hot
case. However, thanks to the robustness of the control law, especially with respect to low
values of the static tension, the librational response for the cold and hot cases are

completely satisfactory.
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11.2° Control law performance during the flight
11.2.1 Estimate of the maximum libration at the end of deployment

The libration amplitude of SEDS-2 at the end of deployment must be estimated
indirectly because there are no on-board sensors to measure that variable directly.

The estimate of the maximum tether libration is, therefore, carried out with the
following two methods: (1) by analyzing the tether tension variation for constant tether
length (i.e., after deployment); and (2) by simulating the deployment libration dynamics for
the tether velocity and length deployment profiles of the actual flight.

Tension method

The tether tension contains the information of the tether libration amplitude because the
libration modulates the tension at the frequency of the libration. For an inextensible tether
and two-dimensional librations in the orbital plane:

T

E=(('e+ Q)2 + Q2(3cos20 -1)] L = [( 6+ Q)2 + 2Q2] L (11.19)

where T is the tether tension, m; the reduced mass, 6 the libration angle with respect to the
local vertical, L is the deployed tether length, and  the orbital rate. The approximation in
eqn (11.9) is valid for small libration amplitudes. The tension can be further subdivided
into a static part owing to the gravity gradient and a dynamic part owing to the libration as

follows:
To =3Q2m,L (11.20.1)
AT =(0+2Q) 6 m,L (11.20.2)

where AT is the amplitude of the tension fluctuation due to libration.

For free in-plane librations whereby 6 = v3Q8, eqn (11.20.2) leads to the following
quadratic equation:

2 ATq
Om?2 + =06, - ——2 11.21)
T3 392 m L (

from which the maximum libration amplitude 8, can be readily obtained.
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Presently, the tether tension is available only from the tensiometer at the deployer fora
duration of approximately 15,500 s from satellite ejection. The flight tension contains not
only the libration-related fluctuations but also tension oscillations due to many other natural
oscillations and external perturbations. The libration component, however, has a distinct
signature because of its very long period of 3200 s.

The libration component was extracted from the flight tension data through filtering.
Figure 11.19(a) shows the flight raw tension while Fig. 11.19(b) shows the filtered
tension after deployment. The curves in Fig. 11.19(b) are for: (1) a 100-s running average;
(2) a recursive low-pass filter with a cut-off frequency of about 10-3 Hz (i.e., a period of
1000 s); and (3) a smoothed version of the recursive filter output in solid line. The peak-
to-peak amplitude of the tension component related to libration is about 0.3 N which
corresponds to a maximum tension amplitude AT, = 0.15 N.

After substitution of the numerical value above, eqn (11.21) yields a maximum

libration amplitude of 3.2 deg.

The estimate of the libration amplitude with the tension method could be improved in
the near future with the release of the load cell and accelerometer data from the satellite.
The duration of the satellite data is longer as it covers about 7 orbits and will, therefore,
enable an even more accurate estimate of the low-frequency libration-related tension

fluctuations.

Velocity method

The second method adopted to evaluate the amplitude of libration at the end of
deployment is by feeding the tether-dynamics simulator with the length and velocity

profiles from the flight data.

The velocity profile, however, is corrupted because of the failure of one turn counter
after t = 2200 s as shown in Fig. 11.20(a). The tether length flight profile is shown in Fig.
11.20(b). Furthermore the flight velocity profile exhibits a strong variability at high
frequencies which disturbs the simulator. For the reasons above, the velocity profile must
be cleaned as much as possible of the spurious values due to the turn counter malfunctions
and subsequently filtered to remove the high frequency fluctuations. It is important to note
that the high frequency fluctuations have an almost negligible effect on the low frequency

librations.
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The spurious counts of tether velocity were eliminated by discarding all the velocity
values greater than 10 m/s. Subsequently, the velocity profile was filtered with a 10-s and
a 100-s moving average filter.

Figure 11.21(a) and 11.21(b) show the the 10-s running average velocity and the
associated libration response for the actual orbital parameters of the SEDS-2 mission. The
100-s running average velocity and the associated libration response are shown in Figures
11.22(a) and 11.22(b).

The maximum libration amplitude at the end of deployment for the two case is 4 deg
and 2 deg respectively which are in line with the estimate from the tension method.

The tension method, however, is more accurate because it is a more direct
measurement of libration. In conclusion, it is reasonable to assume at this point in time that

the maximum libration amplitude at the end of deployment was about 3 deg.

This estimate could be validated and maybe refined in the near future when the data

from the load cells and the accelerometers on board the satellite become available.
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11.2.2 More on the performance of the control law

The deployment of SEDS-2 stopped when the brake was ramped up to its maximum
number of turns equal to 6. The ramping up started at t = 6560 s from ejection and
terminated at t = 6590 s. The ramping up from about 3 turns to 6 turns of the brake post
took approximately 30 s due to the brake speed of 0.1 turn/s. Att = 6560 s, the tether
longitudinal speed was 0.018 m/s and the (corrected) final length was 19,745 km.
Because of the failure of 1 turn counter at t = 2200 s and a tether length of 3.3 km, this
final tether length has been adjusted by taking into account the =380 spurious turn counts

computed by the remaining turn counter.

It is remarkable to see that the actual final value of the tether length is only 35 m
shorter of the 19,780 m estimated before the flight for the nominal deployment (see Section
11.1.5). The deployment stop shortly before reaching 20 km should be attributed to the
300 m segment of old tether that forms the last portion of the tether. This segment of tether
has much higher friction than the rest of the tether.

The final portion of the deployment was sufficiently smooth to provide a very gentle

ride for the satellite without any loss of tether tension.

We would like to stress the excellent behavior of the control law notwithstanding the
strong fluctuations of the velocity as measured by the turn counter(s) which were caused
by the detected failure of one turn counter. The filtering and numerical technique for
evaluating the velocity adopted in the control law provided a smooth actuation of the brake

notwithstanding the high noise levels in the turn counts and turn rate.

The brake actuation, as shown in Fig. 11.23, was not jittery for most of the
deployment. The more jagged behavior of the brake for t > 5300 s can be attributed to the
multiple sling/scrub transitions that occur for a small diameter of the tether spool (i.e., at
the end of deployment and for small velocities the tether starts scrubbing on an aluminum
flange with a consequent steep increase of the friction) and to the change in winding pattern

of the tether spool.

The estimation of the minimum deployment tension is related to refining of the tension
model. The tension model adopted for the pre-flight simulations was adequate but it is not
refined enough to provide a high fidelity fit between the flight data and the simulated data.
At this point, the minimum tension can be estimated to be in the range 10-20 mN. The

nominal value of the minimum tension from the most recent ground tests was in the range
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10-15 mN. Consequently, the actual deployment, from the friction standpoint, was close

to nominal.

The control law for SEDS-2 was based on predefined reference profiles for length,
length rate and brake. It is worth mentioning that nominal deployment does not mean
reference deployment. The reference for SEDS-2 was derived for a minimum tension of
30 mN. This choice was based on the data of SEDS-1, which exhibited a higher minimum
tension, and on the effort for increasing the robustness of the control law with respect to
variations of the minimum tension. The successful performance of SEDS-2 during

deployment proved that the control law was indeed robust.
11.3  Conclusions on SEDS-2 control law

The (closed-loop) control law of SEDS-2 was developed for reducing the final
libration amplitude to less than 10° as opposed to the 57° libration amplitude exhibited by
SEDS-1 during its flight.

The control law was designed for robustness with respect to variations or uncertainties
of the tension model parameters and of the brake response. Specifically, a variation of the
most influential parameter, the minimum tension, between 10 mN and 45 mN was
estimated to cause a final libration amplitude ranging from 2 deg to 10 deg, respectively.
Consequently, the best performance had to be expected for low values of the minimum
tension. The control law was also robust with respect to uncertainties of the friction
coefficient, which affects the brake response, of £50% and almost immune to random

tensional noise.

During the flight, the control law of SEDS-2 performed as expected notwithstanding
the detected failure of one turn counter at about t = 2200 s and a tether length of 3.3 km. A
final deployment length of 19,745 m was reached at t = 6560 s with a final deployment
speed of 0.018 m/s.

The maximum libration amplitude at the end of deployment is presently estimated at
about 3 deg with respect to the local vertical. A value which is also consistent with the
expected performance for a minimum tension of 10-20 mN. All the success criteria
established before the flight were met with ample margin. The control law performed at the
very top of the pre-flight expectations.
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